{"title":"一套无基础设施的用户级网络诊断方案","authors":"Yao Zhao, Yan Chen","doi":"10.1109/INFCOM.2007.251","DOIUrl":null,"url":null,"abstract":"It is highly desirable and important for end users, with no special privileges, identify and pinpoint faults inside the network that degrade the performance of their applications. However, existing tools are inaccurate to infer the link-level loss rates and have large diagnosis granularity (in terms of the number of hops). To address these problems, we propose a suite of user-level diagnosis approaches in two categories: (1) only need to be deployed at the source and (2) deployed at both source and destination. For the former, we propose two fragmentation aided diagnosis approaches (FAD), Algebraic FAD and Opportunistic FAD, which uses IP fragmentation to enable accurate link-level loss rate inference. For the latter category, we propose Striped Probe Analysis (SPA) which significantly improves the diagnosis granularity over those of the source-only approaches. Internet experiments are applied to evaluate each individual schemes (including an improved version of the state-of-the-art tool, Tulip [1]) and various hybrid approaches. The results indicate that our approaches dramatically outperform existing work (especially for diagnosis granularity) and provide not only the best performance but also smooth tradeoff among deployment requirement, diagnosis accuracy and granularity.","PeriodicalId":426451,"journal":{"name":"IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Suite of Schemes for User-Level Network Diagnosis without Infrastructure\",\"authors\":\"Yao Zhao, Yan Chen\",\"doi\":\"10.1109/INFCOM.2007.251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is highly desirable and important for end users, with no special privileges, identify and pinpoint faults inside the network that degrade the performance of their applications. However, existing tools are inaccurate to infer the link-level loss rates and have large diagnosis granularity (in terms of the number of hops). To address these problems, we propose a suite of user-level diagnosis approaches in two categories: (1) only need to be deployed at the source and (2) deployed at both source and destination. For the former, we propose two fragmentation aided diagnosis approaches (FAD), Algebraic FAD and Opportunistic FAD, which uses IP fragmentation to enable accurate link-level loss rate inference. For the latter category, we propose Striped Probe Analysis (SPA) which significantly improves the diagnosis granularity over those of the source-only approaches. Internet experiments are applied to evaluate each individual schemes (including an improved version of the state-of-the-art tool, Tulip [1]) and various hybrid approaches. The results indicate that our approaches dramatically outperform existing work (especially for diagnosis granularity) and provide not only the best performance but also smooth tradeoff among deployment requirement, diagnosis accuracy and granularity.\",\"PeriodicalId\":426451,\"journal\":{\"name\":\"IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2007.251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2007.251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Suite of Schemes for User-Level Network Diagnosis without Infrastructure
It is highly desirable and important for end users, with no special privileges, identify and pinpoint faults inside the network that degrade the performance of their applications. However, existing tools are inaccurate to infer the link-level loss rates and have large diagnosis granularity (in terms of the number of hops). To address these problems, we propose a suite of user-level diagnosis approaches in two categories: (1) only need to be deployed at the source and (2) deployed at both source and destination. For the former, we propose two fragmentation aided diagnosis approaches (FAD), Algebraic FAD and Opportunistic FAD, which uses IP fragmentation to enable accurate link-level loss rate inference. For the latter category, we propose Striped Probe Analysis (SPA) which significantly improves the diagnosis granularity over those of the source-only approaches. Internet experiments are applied to evaluate each individual schemes (including an improved version of the state-of-the-art tool, Tulip [1]) and various hybrid approaches. The results indicate that our approaches dramatically outperform existing work (especially for diagnosis granularity) and provide not only the best performance but also smooth tradeoff among deployment requirement, diagnosis accuracy and granularity.