多用户大规模MIMO的迭代非线性检测与解码

A. Ivanov, Andrey Savinov, D. Yarotsky
{"title":"多用户大规模MIMO的迭代非线性检测与解码","authors":"A. Ivanov, Andrey Savinov, D. Yarotsky","doi":"10.1109/IWCMC.2019.8766553","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new candidates list re-calculating to improve performance of iterative nonlinear detection and decoding in Multi-User (MU) Massive Multiple Input, Multiple Output (MIMO) system. The proposed nonlinear iterative detector includes a new algorithm of users (UEs) sorting before QR decomposition (QRD) and a new sorting-reduced (SR) K-best method. If MIMO detector is based on a candidates list updates, the performance can be improved by the candidates list re-calculating or using a priori information in the list generation. This is natural, because the quality of the candidates list is likely to be improved by using the decoder output as a priori information. We analyze the convergence of combining the detection algorithms with the soft low-density parity-check (LDPC) decoder. Simulation results are presented in 5G QuaDRiGa channel with QAM64 modulation in 48 × 64 MIMO system and compared with other state-of-art approaches.","PeriodicalId":363800,"journal":{"name":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Iterative Nonlinear Detection and Decoding in Multi-User Massive MIMO\",\"authors\":\"A. Ivanov, Andrey Savinov, D. Yarotsky\",\"doi\":\"10.1109/IWCMC.2019.8766553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new candidates list re-calculating to improve performance of iterative nonlinear detection and decoding in Multi-User (MU) Massive Multiple Input, Multiple Output (MIMO) system. The proposed nonlinear iterative detector includes a new algorithm of users (UEs) sorting before QR decomposition (QRD) and a new sorting-reduced (SR) K-best method. If MIMO detector is based on a candidates list updates, the performance can be improved by the candidates list re-calculating or using a priori information in the list generation. This is natural, because the quality of the candidates list is likely to be improved by using the decoder output as a priori information. We analyze the convergence of combining the detection algorithms with the soft low-density parity-check (LDPC) decoder. Simulation results are presented in 5G QuaDRiGa channel with QAM64 modulation in 48 × 64 MIMO system and compared with other state-of-art approaches.\",\"PeriodicalId\":363800,\"journal\":{\"name\":\"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCMC.2019.8766553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCMC.2019.8766553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

为了提高多用户(MU)海量多输入多输出(MIMO)系统的迭代非线性检测和解码性能,提出了一种新的候选列表重计算方法。提出的非线性迭代检测器包括一种新的QR分解前用户排序(ue)算法和一种新的排序简化(SR) k -优方法。如果MIMO检测器基于候选列表更新,则可以通过重新计算候选列表或在列表生成中使用先验信息来提高性能。这是很自然的,因为使用解码器输出作为先验信息可能会提高候选列表的质量。分析了检测算法与软低密度奇偶校验(LDPC)解码器相结合的收敛性。给出了在48 × 64 MIMO系统中采用QAM64调制的5G QuaDRiGa信道下的仿真结果,并与其他最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative Nonlinear Detection and Decoding in Multi-User Massive MIMO
In this paper, we propose a new candidates list re-calculating to improve performance of iterative nonlinear detection and decoding in Multi-User (MU) Massive Multiple Input, Multiple Output (MIMO) system. The proposed nonlinear iterative detector includes a new algorithm of users (UEs) sorting before QR decomposition (QRD) and a new sorting-reduced (SR) K-best method. If MIMO detector is based on a candidates list updates, the performance can be improved by the candidates list re-calculating or using a priori information in the list generation. This is natural, because the quality of the candidates list is likely to be improved by using the decoder output as a priori information. We analyze the convergence of combining the detection algorithms with the soft low-density parity-check (LDPC) decoder. Simulation results are presented in 5G QuaDRiGa channel with QAM64 modulation in 48 × 64 MIMO system and compared with other state-of-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信