异构图神经网络

Chuxu Zhang, Dongjin Song, Chao Huang, A. Swami, N. Chawla
{"title":"异构图神经网络","authors":"Chuxu Zhang, Dongjin Song, Chao Huang, A. Swami, N. Chawla","doi":"10.1145/3292500.3330961","DOIUrl":null,"url":null,"abstract":"Representation learning in heterogeneous graphs aims to pursue a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the demand to incorporate heterogeneous structural (graph) information consisting of multiple types of nodes and edges, but also due to the need for considering heterogeneous attributes or contents (e.g., text or image) associated with each node. Despite a substantial amount of effort has been made to homogeneous (or heterogeneous) graph embedding, attributed graph embedding as well as graph neural networks, few of them can jointly consider heterogeneous structural (graph) information as well as heterogeneous contents information of each node effectively. In this paper, we propose HetGNN, a heterogeneous graph neural network model, to resolve this issue. Specifically, we first introduce a random walk with restart strategy to sample a fixed size of strongly correlated heterogeneous neighbors for each node and group them based upon node types. Next, we design a neural network architecture with two modules to aggregate feature information of those sampled neighboring nodes. The first module encodes \"deep\" feature interactions of heterogeneous contents and generates content embedding for each node. The second module aggregates content (attribute) embeddings of different neighboring groups (types) and further combines them by considering the impacts of different groups to obtain the ultimate node embedding. Finally, we leverage a graph context loss and a mini-batch gradient descent procedure to train the model in an end-to-end manner. Extensive experiments on several datasets demonstrate that HetGNN can outperform state-of-the-art baselines in various graph mining tasks, i.e., link prediction, recommendation, node classification & clustering and inductive node classification & clustering.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"879","resultStr":"{\"title\":\"Heterogeneous Graph Neural Network\",\"authors\":\"Chuxu Zhang, Dongjin Song, Chao Huang, A. Swami, N. Chawla\",\"doi\":\"10.1145/3292500.3330961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation learning in heterogeneous graphs aims to pursue a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the demand to incorporate heterogeneous structural (graph) information consisting of multiple types of nodes and edges, but also due to the need for considering heterogeneous attributes or contents (e.g., text or image) associated with each node. Despite a substantial amount of effort has been made to homogeneous (or heterogeneous) graph embedding, attributed graph embedding as well as graph neural networks, few of them can jointly consider heterogeneous structural (graph) information as well as heterogeneous contents information of each node effectively. In this paper, we propose HetGNN, a heterogeneous graph neural network model, to resolve this issue. Specifically, we first introduce a random walk with restart strategy to sample a fixed size of strongly correlated heterogeneous neighbors for each node and group them based upon node types. Next, we design a neural network architecture with two modules to aggregate feature information of those sampled neighboring nodes. The first module encodes \\\"deep\\\" feature interactions of heterogeneous contents and generates content embedding for each node. The second module aggregates content (attribute) embeddings of different neighboring groups (types) and further combines them by considering the impacts of different groups to obtain the ultimate node embedding. Finally, we leverage a graph context loss and a mini-batch gradient descent procedure to train the model in an end-to-end manner. Extensive experiments on several datasets demonstrate that HetGNN can outperform state-of-the-art baselines in various graph mining tasks, i.e., link prediction, recommendation, node classification & clustering and inductive node classification & clustering.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"879\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 879

摘要

异构图中的表示学习旨在为每个节点寻求有意义的向量表示,以方便下游应用,如链接预测、个性化推荐、节点分类等。然而,这项任务具有挑战性,不仅因为需要合并由多种类型的节点和边组成的异构结构(图)信息,而且还因为需要考虑与每个节点相关的异构属性或内容(例如,文本或图像)。尽管在同质(或异构)图嵌入、属性图嵌入以及图神经网络等方面已经做了大量的研究,但能够有效地联合考虑各节点的异构结构(图)信息和异构内容信息的却很少。本文提出了异构图神经网络模型HetGNN来解决这一问题。具体来说,我们首先引入带重启策略的随机行走,为每个节点采样固定大小的强相关异构邻居,并根据节点类型对它们进行分组。接下来,我们设计了一个包含两个模块的神经网络架构,对这些采样的相邻节点的特征信息进行聚合。第一个模块对异构内容的“深度”特征交互进行编码,并为每个节点生成内容嵌入。第二个模块对不同相邻组(类型)的内容(属性)嵌入进行聚合,并考虑不同组(类型)的影响,进一步进行组合,得到最终的节点嵌入。最后,我们利用图上下文损失和小批量梯度下降过程以端到端方式训练模型。在多个数据集上进行的大量实验表明,HetGNN在各种图挖掘任务(即链接预测、推荐、节点分类聚类和归纳节点分类聚类)中可以优于最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Graph Neural Network
Representation learning in heterogeneous graphs aims to pursue a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the demand to incorporate heterogeneous structural (graph) information consisting of multiple types of nodes and edges, but also due to the need for considering heterogeneous attributes or contents (e.g., text or image) associated with each node. Despite a substantial amount of effort has been made to homogeneous (or heterogeneous) graph embedding, attributed graph embedding as well as graph neural networks, few of them can jointly consider heterogeneous structural (graph) information as well as heterogeneous contents information of each node effectively. In this paper, we propose HetGNN, a heterogeneous graph neural network model, to resolve this issue. Specifically, we first introduce a random walk with restart strategy to sample a fixed size of strongly correlated heterogeneous neighbors for each node and group them based upon node types. Next, we design a neural network architecture with two modules to aggregate feature information of those sampled neighboring nodes. The first module encodes "deep" feature interactions of heterogeneous contents and generates content embedding for each node. The second module aggregates content (attribute) embeddings of different neighboring groups (types) and further combines them by considering the impacts of different groups to obtain the ultimate node embedding. Finally, we leverage a graph context loss and a mini-batch gradient descent procedure to train the model in an end-to-end manner. Extensive experiments on several datasets demonstrate that HetGNN can outperform state-of-the-art baselines in various graph mining tasks, i.e., link prediction, recommendation, node classification & clustering and inductive node classification & clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信