判别非线性模型的准确结果

Oriol Tintó Prims, M. Acosta, M. Castrillo, S. P. Ticco, K. Serradell, A. Cortés, F. Doblas-Reyes
{"title":"判别非线性模型的准确结果","authors":"Oriol Tintó Prims, M. Acosta, M. Castrillo, S. P. Ticco, K. Serradell, A. Cortés, F. Doblas-Reyes","doi":"10.1109/HPCS48598.2019.9188178","DOIUrl":null,"url":null,"abstract":"Non-linear models are challenging when it is time to verify that a certain HPC optimization does not degrade the accuracy of a model. Any apparently insignificant change in the code, in the software stack, or in the HPC system used can prevent bit-to-bit reproducibility, which added to the intrinsic nonlinearities of the model can lead to differences in the results of the simulation. Being able to deduce whether the different results can be explained by the internal variability of the model can help to decide if a specific change is acceptable. This manuscript presents a method that consists in estimating the uncertainty of the model outputs by doing many almost-identical simulations slightly modifying the model inputs. The statistical information extracted from these simulations can be used to discern if the results of a given simulation are indistinguishable or instead there are significant differences. Two illustrative usage examples of the method are provided, the first one studying whether a Lorenz system model can use less numerical precision and the second one studying whether the state-of-the art ocean model NEMO can safely use certain compiler optimization flags.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminating accurate results in nonlinear models\",\"authors\":\"Oriol Tintó Prims, M. Acosta, M. Castrillo, S. P. Ticco, K. Serradell, A. Cortés, F. Doblas-Reyes\",\"doi\":\"10.1109/HPCS48598.2019.9188178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-linear models are challenging when it is time to verify that a certain HPC optimization does not degrade the accuracy of a model. Any apparently insignificant change in the code, in the software stack, or in the HPC system used can prevent bit-to-bit reproducibility, which added to the intrinsic nonlinearities of the model can lead to differences in the results of the simulation. Being able to deduce whether the different results can be explained by the internal variability of the model can help to decide if a specific change is acceptable. This manuscript presents a method that consists in estimating the uncertainty of the model outputs by doing many almost-identical simulations slightly modifying the model inputs. The statistical information extracted from these simulations can be used to discern if the results of a given simulation are indistinguishable or instead there are significant differences. Two illustrative usage examples of the method are provided, the first one studying whether a Lorenz system model can use less numerical precision and the second one studying whether the state-of-the art ocean model NEMO can safely use certain compiler optimization flags.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当需要验证某个HPC优化不会降低模型的准确性时,非线性模型是具有挑战性的。在代码、软件栈或HPC系统中,任何明显无关紧要的变化都可能妨碍比特对比特的再现性,这增加了模型的固有非线性,可能导致模拟结果的差异。能够推断出不同的结果是否可以用模型的内部可变性来解释,可以帮助决定特定的变化是否可以接受。本文提出了一种方法,通过做许多几乎相同的模拟来估计模型输出的不确定性,稍微修改模型输入。从这些模拟中提取的统计信息可用于辨别给定模拟的结果是难以区分还是存在显著差异。给出了该方法的两个示例,第一个示例研究了Lorenz系统模型是否可以使用较少的数值精度,第二个示例研究了最先进的海洋模型NEMO是否可以安全地使用某些编译器优化标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminating accurate results in nonlinear models
Non-linear models are challenging when it is time to verify that a certain HPC optimization does not degrade the accuracy of a model. Any apparently insignificant change in the code, in the software stack, or in the HPC system used can prevent bit-to-bit reproducibility, which added to the intrinsic nonlinearities of the model can lead to differences in the results of the simulation. Being able to deduce whether the different results can be explained by the internal variability of the model can help to decide if a specific change is acceptable. This manuscript presents a method that consists in estimating the uncertainty of the model outputs by doing many almost-identical simulations slightly modifying the model inputs. The statistical information extracted from these simulations can be used to discern if the results of a given simulation are indistinguishable or instead there are significant differences. Two illustrative usage examples of the method are provided, the first one studying whether a Lorenz system model can use less numerical precision and the second one studying whether the state-of-the art ocean model NEMO can safely use certain compiler optimization flags.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信