细胞间的异质性和稀缺资源如何塑造拨动开关的种群水平稳定性

A. György
{"title":"细胞间的异质性和稀缺资源如何塑造拨动开关的种群水平稳定性","authors":"A. György","doi":"10.1109/CDC40024.2019.9030266","DOIUrl":null,"url":null,"abstract":"The lack of modularity in synthetic biology presents one of the major bottlenecks in the scalability of complex gene circuits. One source of this context-dependent behavior is the scarcity of shared transcriptional and translational resources. To overcome this issue, predictive computational tools must account for the resulting competition phenomenon both when studying individual cells and at the population-level considering cell-to-cell heterogeneity. Since toggle switches are one of the most widely used genetic modules, here we focus on how shared resources affect the stability profile of toggle switches even in the presence of loading from their context. Modeling the parameters of the toggle switch as random variables reveals how cellular context, noise and correlation between key parameters shape the population-level stability distribution. To demonstrate the relevance of our results, we illustrate that detrimental effects of even unknown contexts can be bounded, thus enabling the design of genetic modules that are robust to disturbances due to unknown loading effects.","PeriodicalId":411031,"journal":{"name":"IEEE Conference on Decision and Control","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"How Cell-to-Cell Heterogeneity and Scarce Resources Shape the Population-Level Stability Profile of Toggle Switches\",\"authors\":\"A. György\",\"doi\":\"10.1109/CDC40024.2019.9030266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of modularity in synthetic biology presents one of the major bottlenecks in the scalability of complex gene circuits. One source of this context-dependent behavior is the scarcity of shared transcriptional and translational resources. To overcome this issue, predictive computational tools must account for the resulting competition phenomenon both when studying individual cells and at the population-level considering cell-to-cell heterogeneity. Since toggle switches are one of the most widely used genetic modules, here we focus on how shared resources affect the stability profile of toggle switches even in the presence of loading from their context. Modeling the parameters of the toggle switch as random variables reveals how cellular context, noise and correlation between key parameters shape the population-level stability distribution. To demonstrate the relevance of our results, we illustrate that detrimental effects of even unknown contexts can be bounded, thus enabling the design of genetic modules that are robust to disturbances due to unknown loading effects.\",\"PeriodicalId\":411031,\"journal\":{\"name\":\"IEEE Conference on Decision and Control\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC40024.2019.9030266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC40024.2019.9030266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Cell-to-Cell Heterogeneity and Scarce Resources Shape the Population-Level Stability Profile of Toggle Switches
The lack of modularity in synthetic biology presents one of the major bottlenecks in the scalability of complex gene circuits. One source of this context-dependent behavior is the scarcity of shared transcriptional and translational resources. To overcome this issue, predictive computational tools must account for the resulting competition phenomenon both when studying individual cells and at the population-level considering cell-to-cell heterogeneity. Since toggle switches are one of the most widely used genetic modules, here we focus on how shared resources affect the stability profile of toggle switches even in the presence of loading from their context. Modeling the parameters of the toggle switch as random variables reveals how cellular context, noise and correlation between key parameters shape the population-level stability distribution. To demonstrate the relevance of our results, we illustrate that detrimental effects of even unknown contexts can be bounded, thus enabling the design of genetic modules that are robust to disturbances due to unknown loading effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信