高效样条插值

L. Ferrari, P. Sankar
{"title":"高效样条插值","authors":"L. Ferrari, P. Sankar","doi":"10.1109/ACSSC.1995.540813","DOIUrl":null,"url":null,"abstract":"The problem of interpolating data points using a smooth function has many existing solutions. In particular, the use of piecewise polynomials (splines) has provided solutions with user controlled smoothness. In this paper we introduce a new interpolation procedure which utilizes multiple knot Hermitian splines. The technique renders the interpolating spline function using fixed point shifts and additions. In applications requiring parallel computation the use of these simpler operations implies a significant reduction in hardware complexity.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient spline interpolation\",\"authors\":\"L. Ferrari, P. Sankar\",\"doi\":\"10.1109/ACSSC.1995.540813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of interpolating data points using a smooth function has many existing solutions. In particular, the use of piecewise polynomials (splines) has provided solutions with user controlled smoothness. In this paper we introduce a new interpolation procedure which utilizes multiple knot Hermitian splines. The technique renders the interpolating spline function using fixed point shifts and additions. In applications requiring parallel computation the use of these simpler operations implies a significant reduction in hardware complexity.\",\"PeriodicalId\":171264,\"journal\":{\"name\":\"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1995.540813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用平滑函数插值数据点的问题有许多现有的解决方案。特别是,分段多项式(样条)的使用提供了用户控制平滑的解决方案。本文介绍了一种利用多节厄米样条插值的新方法。该技术使用定点移位和加法来呈现插值样条函数。在需要并行计算的应用程序中,使用这些更简单的操作意味着硬件复杂性的显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient spline interpolation
The problem of interpolating data points using a smooth function has many existing solutions. In particular, the use of piecewise polynomials (splines) has provided solutions with user controlled smoothness. In this paper we introduce a new interpolation procedure which utilizes multiple knot Hermitian splines. The technique renders the interpolating spline function using fixed point shifts and additions. In applications requiring parallel computation the use of these simpler operations implies a significant reduction in hardware complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信