泊松、二项和负二项模型的新信息估计结果

Camilo G. Taborda, F. Pérez-Cruz, Dongning Guo
{"title":"泊松、二项和负二项模型的新信息估计结果","authors":"Camilo G. Taborda, F. Pérez-Cruz, Dongning Guo","doi":"10.1109/ISIT.2014.6875225","DOIUrl":null,"url":null,"abstract":"In recent years, a number of mathematical relationships have been established between information measures and estimation measures for various models, including Gaussian, Poisson and binomial models. In this paper, it is shown that the second derivative of the input-output mutual information with respect to the input scaling can be expressed as the expectation of a certain Bregman divergence pertaining to the conditional expectations of the input and the input power. This result is similar to that found for the Gaussian model where the Bregman divergence therein is the square distance. In addition, the Poisson, binomial and negative binomial models are shown to be similar in the small scaling regime in the sense that the derivative of the mutual information and the derivative of the relative entropy converge to the same value.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New information-estimation results for poisson, binomial and negative binomial models\",\"authors\":\"Camilo G. Taborda, F. Pérez-Cruz, Dongning Guo\",\"doi\":\"10.1109/ISIT.2014.6875225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, a number of mathematical relationships have been established between information measures and estimation measures for various models, including Gaussian, Poisson and binomial models. In this paper, it is shown that the second derivative of the input-output mutual information with respect to the input scaling can be expressed as the expectation of a certain Bregman divergence pertaining to the conditional expectations of the input and the input power. This result is similar to that found for the Gaussian model where the Bregman divergence therein is the square distance. In addition, the Poisson, binomial and negative binomial models are shown to be similar in the small scaling regime in the sense that the derivative of the mutual information and the derivative of the relative entropy converge to the same value.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,各种模型的信息测度和估计测度之间建立了许多数学关系,包括高斯模型、泊松模型和二项模型。本文证明了输入-输出互信息对输入尺度的二阶导数可以表示为与输入和输入功率的条件期望有关的某个Bregman散度的期望。这个结果与高斯模型相似,其中布雷格曼散度是平方距离。此外,泊松模型、二项式模型和负二项式模型在小尺度范围内具有相似性,即互信息的导数和相对熵的导数收敛于同一值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New information-estimation results for poisson, binomial and negative binomial models
In recent years, a number of mathematical relationships have been established between information measures and estimation measures for various models, including Gaussian, Poisson and binomial models. In this paper, it is shown that the second derivative of the input-output mutual information with respect to the input scaling can be expressed as the expectation of a certain Bregman divergence pertaining to the conditional expectations of the input and the input power. This result is similar to that found for the Gaussian model where the Bregman divergence therein is the square distance. In addition, the Poisson, binomial and negative binomial models are shown to be similar in the small scaling regime in the sense that the derivative of the mutual information and the derivative of the relative entropy converge to the same value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信