基于深度学习方法的磁共振成像数据心脏分割

A. Razumov, Y. N. Tya-Shen-Tin, K. Ushenin
{"title":"基于深度学习方法的磁共振成像数据心脏分割","authors":"A. Razumov, Y. N. Tya-Shen-Tin, K. Ushenin","doi":"10.1063/1.5134397","DOIUrl":null,"url":null,"abstract":"The study compared UNet, ENet, and BoxENet convolutional neural network architectures that provide the various approach of increasing of the receptive field. The analysis employed an Automated Cardiac Diagnosis challenge dataset containing the magnetic resonance imaging data of 150 patients to solve a segmentation problem for left ventricle cavities and myocardium of the right ventricle. We show that while UNet models achieve 5% higher accuracy on the validation dataset than other neural network architectures, ENet and BoxENet can be trained five times faster and require only half the memory than UNet.","PeriodicalId":418936,"journal":{"name":"PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiac segmentation on magnetic resonance imaging data with deep learning methods\",\"authors\":\"A. Razumov, Y. N. Tya-Shen-Tin, K. Ushenin\",\"doi\":\"10.1063/1.5134397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study compared UNet, ENet, and BoxENet convolutional neural network architectures that provide the various approach of increasing of the receptive field. The analysis employed an Automated Cardiac Diagnosis challenge dataset containing the magnetic resonance imaging data of 150 patients to solve a segmentation problem for left ventricle cavities and myocardium of the right ventricle. We show that while UNet models achieve 5% higher accuracy on the validation dataset than other neural network architectures, ENet and BoxENet can be trained five times faster and require only half the memory than UNet.\",\"PeriodicalId\":418936,\"journal\":{\"name\":\"PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5134397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5134397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究比较了UNet、ENet和BoxENet卷积神经网络架构,它们提供了各种增加感受野的方法。该分析使用了包含150例患者磁共振成像数据的自动心脏诊断挑战数据集来解决左心室腔和右心室心肌的分割问题。我们表明,虽然UNet模型在验证数据集上的准确率比其他神经网络架构高5%,但ENet和BoxENet的训练速度可以提高5倍,并且只需要UNet一半的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiac segmentation on magnetic resonance imaging data with deep learning methods
The study compared UNet, ENet, and BoxENet convolutional neural network architectures that provide the various approach of increasing of the receptive field. The analysis employed an Automated Cardiac Diagnosis challenge dataset containing the magnetic resonance imaging data of 150 patients to solve a segmentation problem for left ventricle cavities and myocardium of the right ventricle. We show that while UNet models achieve 5% higher accuracy on the validation dataset than other neural network architectures, ENet and BoxENet can be trained five times faster and require only half the memory than UNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信