人工神经网络转子断条感应电动机故障检测

D. Matic, F. Kulić, V. Climente-Alarcon, R. Puche-Panadero
{"title":"人工神经网络转子断条感应电动机故障检测","authors":"D. Matic, F. Kulić, V. Climente-Alarcon, R. Puche-Panadero","doi":"10.1109/NEUREL.2010.5644051","DOIUrl":null,"url":null,"abstract":"Paper deals with application of online rotor broken bar fault detection via artificial neural networks. Fault can be detected by monitoring abnormalities of the spectrum amplitudes at certain frequencies in the motor current spectrum. These discriminative features are used for training of feed-forward backpropagation artificial neural network. Trained network is capable to successfully classify induction motor rotor condition. Results are presented in tables and figures.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Artificial neural networks broken rotor bars induction motor fault detection\",\"authors\":\"D. Matic, F. Kulić, V. Climente-Alarcon, R. Puche-Panadero\",\"doi\":\"10.1109/NEUREL.2010.5644051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paper deals with application of online rotor broken bar fault detection via artificial neural networks. Fault can be detected by monitoring abnormalities of the spectrum amplitudes at certain frequencies in the motor current spectrum. These discriminative features are used for training of feed-forward backpropagation artificial neural network. Trained network is capable to successfully classify induction motor rotor condition. Results are presented in tables and figures.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

研究了人工神经网络在转子断条故障在线检测中的应用。通过监测电机电流谱中某些频率的频谱幅值的异常,可以检测故障。将这些判别特征用于前馈反向传播人工神经网络的训练。训练后的网络能够成功地对异步电动机转子状态进行分类。结果以表格和图表的形式呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural networks broken rotor bars induction motor fault detection
Paper deals with application of online rotor broken bar fault detection via artificial neural networks. Fault can be detected by monitoring abnormalities of the spectrum amplitudes at certain frequencies in the motor current spectrum. These discriminative features are used for training of feed-forward backpropagation artificial neural network. Trained network is capable to successfully classify induction motor rotor condition. Results are presented in tables and figures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信