基于hsc的支持向量机样本选择方法

Qing He, Ning Li, Zhongzhi Shi
{"title":"基于hsc的支持向量机样本选择方法","authors":"Qing He, Ning Li, Zhongzhi Shi","doi":"10.1109/ICMLC.2010.5580974","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the samples, the time complexity will also increase. So it is necessary to shrink training sets to reduce the time complexity. A sample selection method for SVM is proposed in this paper. It is inspired from the Hyper surface classification (HSC), which is a universal classification method based on Jordan Curve Theorem, and there is no need for mapping from lower-dimensional space to higher-dimensional space. The experiments show that the algorithm shrinks training sets keeping the accuracy for unseen vectors high.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A HSC-based sample selection method for support vector machine\",\"authors\":\"Qing He, Ning Li, Zhongzhi Shi\",\"doi\":\"10.1109/ICMLC.2010.5580974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the samples, the time complexity will also increase. So it is necessary to shrink training sets to reduce the time complexity. A sample selection method for SVM is proposed in this paper. It is inspired from the Hyper surface classification (HSC), which is a universal classification method based on Jordan Curve Theorem, and there is no need for mapping from lower-dimensional space to higher-dimensional space. The experiments show that the algorithm shrinks training sets keeping the accuracy for unseen vectors high.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机是一种基于统计学习理论的机器学习分类技术。该算法需要解决一个二次优化问题,并且随着样本的增加,时间复杂度也会增加。因此,有必要通过压缩训练集来降低时间复杂度。提出了一种支持向量机的样本选择方法。它的灵感来自超表面分类(HSC),这是一种基于Jordan曲线定理的通用分类方法,不需要从低维空间映射到高维空间。实验表明,该算法缩小了训练集,保持了对未见向量的高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A HSC-based sample selection method for support vector machine
Support Vector Machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the samples, the time complexity will also increase. So it is necessary to shrink training sets to reduce the time complexity. A sample selection method for SVM is proposed in this paper. It is inspired from the Hyper surface classification (HSC), which is a universal classification method based on Jordan Curve Theorem, and there is no need for mapping from lower-dimensional space to higher-dimensional space. The experiments show that the algorithm shrinks training sets keeping the accuracy for unseen vectors high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信