在相同处理器数量不断变化的情况下,重新调度以最小化最大时间跨度

C. Tovey
{"title":"在相同处理器数量不断变化的情况下,重新调度以最小化最大时间跨度","authors":"C. Tovey","doi":"10.1002/NAV.3800330414","DOIUrl":null,"url":null,"abstract":"We consider the problem of rescheduling n jobs to minimize the makespan on m parallel identical processors when m changes value. We show this problem to be NP-hard in general. Call a list schedule totally optimal if it is optimal for all m = 1, …,n. When n is less than 6, there always exists a totally optimal schedule, but for n ≥ 6 this can fail. We show that an exact solution is less robust than the largest processing time first (LPT) heuristic and discuss implications for polynomial approximation schemes and hierarchical planning models.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Rescheduling to minimize makespan on a changing number of identical processors\",\"authors\":\"C. Tovey\",\"doi\":\"10.1002/NAV.3800330414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of rescheduling n jobs to minimize the makespan on m parallel identical processors when m changes value. We show this problem to be NP-hard in general. Call a list schedule totally optimal if it is optimal for all m = 1, …,n. When n is less than 6, there always exists a totally optimal schedule, but for n ≥ 6 this can fail. We show that an exact solution is less robust than the largest processing time first (LPT) heuristic and discuss implications for polynomial approximation schemes and hierarchical planning models.\",\"PeriodicalId\":431817,\"journal\":{\"name\":\"Naval Research Logistics Quarterly\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/NAV.3800330414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800330414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们考虑当m的值发生变化时,如何重新调度n个作业以最小化m个并行相同处理器上的最大完工时间的问题。我们证明这个问题一般来说是np困难的。如果一个列表调度对所有m = 1,…,n都是最优的,那么它就是完全最优的。当n小于6时,总存在一个完全最优的调度,但当n≥6时,这个调度可能失效。我们证明了精确解不如最大处理时间优先(LPT)启发式鲁棒性,并讨论了多项式近似方案和分层规划模型的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rescheduling to minimize makespan on a changing number of identical processors
We consider the problem of rescheduling n jobs to minimize the makespan on m parallel identical processors when m changes value. We show this problem to be NP-hard in general. Call a list schedule totally optimal if it is optimal for all m = 1, …,n. When n is less than 6, there always exists a totally optimal schedule, but for n ≥ 6 this can fail. We show that an exact solution is less robust than the largest processing time first (LPT) heuristic and discuss implications for polynomial approximation schemes and hierarchical planning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信