{"title":"在不可解的李群的同质空间中,完美的全息代数","authors":"Наталья Павловна Можей","doi":"10.52065/2520-6141-2022-254-1-5-9","DOIUrl":null,"url":null,"abstract":"In this article we present a local classification of three-dimensional reductive homogeneous spaces allowing a normal connection. We have concerned the case of the unsolvable Lie group of transformations with a solvable stabilizer. We describe all invariant affine connections together with their curvature and torsion tensors, canonical connections and natural torsion-free connections. We have studied the holonomy algebras of homogeneous spaces and have found when the invariant connection is normal.","PeriodicalId":286809,"journal":{"name":"Труды БГТУ Серия 3","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Совершенные алгебры голономии тривиальных связностей на однородных пространствах неразрешимых групп Ли\",\"authors\":\"Наталья Павловна Можей\",\"doi\":\"10.52065/2520-6141-2022-254-1-5-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we present a local classification of three-dimensional reductive homogeneous spaces allowing a normal connection. We have concerned the case of the unsolvable Lie group of transformations with a solvable stabilizer. We describe all invariant affine connections together with their curvature and torsion tensors, canonical connections and natural torsion-free connections. We have studied the holonomy algebras of homogeneous spaces and have found when the invariant connection is normal.\",\"PeriodicalId\":286809,\"journal\":{\"name\":\"Труды БГТУ Серия 3\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Труды БГТУ Серия 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52065/2520-6141-2022-254-1-5-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Труды БГТУ Серия 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52065/2520-6141-2022-254-1-5-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Совершенные алгебры голономии тривиальных связностей на однородных пространствах неразрешимых групп Ли
In this article we present a local classification of three-dimensional reductive homogeneous spaces allowing a normal connection. We have concerned the case of the unsolvable Lie group of transformations with a solvable stabilizer. We describe all invariant affine connections together with their curvature and torsion tensors, canonical connections and natural torsion-free connections. We have studied the holonomy algebras of homogeneous spaces and have found when the invariant connection is normal.