雾域勘探多目标动态优化舰队算法

Ziyang Weng, Shuhao Wang
{"title":"雾域勘探多目标动态优化舰队算法","authors":"Ziyang Weng, Shuhao Wang","doi":"10.1109/ISSSR56778.2022.00015","DOIUrl":null,"url":null,"abstract":"The Fleet algorithm is a new meta-heuristic swarm intelligence algorithm inspired by the behavior of fleet exploring unknown regions, collecting and distributing geo-data and deciding on global voyage data acquisition in the Age of Discovery. To address the problem of solving the optimal path for multi-objective path planning in the exploration of the misty aread, this paper proposes and constructs a dynamic path planning model for a fleet of ships exploring global route geo-data. The global optimal path can be effectively planned by fitting the algorithm model description with the historical archival data for deduction.","PeriodicalId":396707,"journal":{"name":"2022 8th International Symposium on System Security, Safety, and Reliability (ISSSR)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Objective Dynamically Optimized Fleet Algorithm for Misty Fields Exploration\",\"authors\":\"Ziyang Weng, Shuhao Wang\",\"doi\":\"10.1109/ISSSR56778.2022.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fleet algorithm is a new meta-heuristic swarm intelligence algorithm inspired by the behavior of fleet exploring unknown regions, collecting and distributing geo-data and deciding on global voyage data acquisition in the Age of Discovery. To address the problem of solving the optimal path for multi-objective path planning in the exploration of the misty aread, this paper proposes and constructs a dynamic path planning model for a fleet of ships exploring global route geo-data. The global optimal path can be effectively planned by fitting the algorithm model description with the historical archival data for deduction.\",\"PeriodicalId\":396707,\"journal\":{\"name\":\"2022 8th International Symposium on System Security, Safety, and Reliability (ISSSR)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Symposium on System Security, Safety, and Reliability (ISSSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSSR56778.2022.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Symposium on System Security, Safety, and Reliability (ISSSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSR56778.2022.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

船队算法是受大发现时代船队探索未知区域、收集和分发地理数据以及决定全球航行数据采集的行为启发而提出的一种新的元启发式群体智能算法。为解决雾天地区多目标路径规划中最优路径的求解问题,提出并构建了船队探索全球航路地理数据的动态路径规划模型。通过将算法模型描述与历史档案数据进行拟合进行演绎,可以有效地规划全局最优路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Objective Dynamically Optimized Fleet Algorithm for Misty Fields Exploration
The Fleet algorithm is a new meta-heuristic swarm intelligence algorithm inspired by the behavior of fleet exploring unknown regions, collecting and distributing geo-data and deciding on global voyage data acquisition in the Age of Discovery. To address the problem of solving the optimal path for multi-objective path planning in the exploration of the misty aread, this paper proposes and constructs a dynamic path planning model for a fleet of ships exploring global route geo-data. The global optimal path can be effectively planned by fitting the algorithm model description with the historical archival data for deduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信