ViLBERTScore:使用视觉和语言BERT评估图像标题

Hwanhee Lee, Seunghyun Yoon, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Kyomin Jung
{"title":"ViLBERTScore:使用视觉和语言BERT评估图像标题","authors":"Hwanhee Lee, Seunghyun Yoon, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Kyomin Jung","doi":"10.18653/v1/2020.eval4nlp-1.4","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an evaluation metric for image captioning systems using both image and text information. Unlike the previous methods that rely on textual representations in evaluating the caption, our approach uses visiolinguistic representations. The proposed method generates image-conditioned embeddings for each token using ViLBERT from both generated and reference texts. Then, these contextual embeddings from each of the two sentence-pair are compared to compute the similarity score. Experimental results on three benchmark datasets show that our method correlates significantly better with human judgments than all existing metrics.","PeriodicalId":448066,"journal":{"name":"Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"ViLBERTScore: Evaluating Image Caption Using Vision-and-Language BERT\",\"authors\":\"Hwanhee Lee, Seunghyun Yoon, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Kyomin Jung\",\"doi\":\"10.18653/v1/2020.eval4nlp-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an evaluation metric for image captioning systems using both image and text information. Unlike the previous methods that rely on textual representations in evaluating the caption, our approach uses visiolinguistic representations. The proposed method generates image-conditioned embeddings for each token using ViLBERT from both generated and reference texts. Then, these contextual embeddings from each of the two sentence-pair are compared to compute the similarity score. Experimental results on three benchmark datasets show that our method correlates significantly better with human judgments than all existing metrics.\",\"PeriodicalId\":448066,\"journal\":{\"name\":\"Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.eval4nlp-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.eval4nlp-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

在本文中,我们提出了一个同时使用图像和文本信息的图像字幕系统的评价指标。与之前依赖文本表示来评估标题的方法不同,我们的方法使用视觉语言表示。该方法使用ViLBERT从生成文本和参考文本中为每个标记生成图像条件嵌入。然后,比较两个句子对中的每一个上下文嵌入来计算相似度得分。在三个基准数据集上的实验结果表明,我们的方法与人类判断的相关性明显优于所有现有指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViLBERTScore: Evaluating Image Caption Using Vision-and-Language BERT
In this paper, we propose an evaluation metric for image captioning systems using both image and text information. Unlike the previous methods that rely on textual representations in evaluating the caption, our approach uses visiolinguistic representations. The proposed method generates image-conditioned embeddings for each token using ViLBERT from both generated and reference texts. Then, these contextual embeddings from each of the two sentence-pair are compared to compute the similarity score. Experimental results on three benchmark datasets show that our method correlates significantly better with human judgments than all existing metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信