Hang Gong, Tingkui Mu, Qiuxia Li, Feng Han, Abudusalamu Tuniyazi, Haoyang Li, Wenjing Wang, Zhiping He, Chunlai Li, H. Dai
{"title":"采用3D-2D CNN多尺度信息提取融合模块进行高光谱图像分类","authors":"Hang Gong, Tingkui Mu, Qiuxia Li, Feng Han, Abudusalamu Tuniyazi, Haoyang Li, Wenjing Wang, Zhiping He, Chunlai Li, H. Dai","doi":"10.1117/12.2586803","DOIUrl":null,"url":null,"abstract":"Classification is the focus and difficulty of hyperspectral imaging technology. Hyperspectral data have twodimensional spatial information and one-dimensional spectral information, which are presented as three-dimensional data blocks with large amount of information, meanwhile high-dimension, high nonlinearity and limited training samples bring great challenges. Deep learning can extract and analyze the features of target data step by step by building multi-layer deep nonlinear structure. The advanced feature, multi scale abstract information extracted by convolution neural network applied to image processing can improve the classification accuracy of complex hyperspectral data. We regard pixel level hyperspectral classification as semantic segmentation network, and creatively introduce squeeze-and-excitation network and pyramid pooling network into hyperspectral classification network and proposed a model based on the structure of 2D-3D hybrid convolution neural network, it can learn deeper spatial spectral features and fusion to improve the accuracy and speed of hyperspectral classification.","PeriodicalId":370739,"journal":{"name":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperspectral image classification using 3D-2D CNN with multi-scale information extraction and fusion module\",\"authors\":\"Hang Gong, Tingkui Mu, Qiuxia Li, Feng Han, Abudusalamu Tuniyazi, Haoyang Li, Wenjing Wang, Zhiping He, Chunlai Li, H. Dai\",\"doi\":\"10.1117/12.2586803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is the focus and difficulty of hyperspectral imaging technology. Hyperspectral data have twodimensional spatial information and one-dimensional spectral information, which are presented as three-dimensional data blocks with large amount of information, meanwhile high-dimension, high nonlinearity and limited training samples bring great challenges. Deep learning can extract and analyze the features of target data step by step by building multi-layer deep nonlinear structure. The advanced feature, multi scale abstract information extracted by convolution neural network applied to image processing can improve the classification accuracy of complex hyperspectral data. We regard pixel level hyperspectral classification as semantic segmentation network, and creatively introduce squeeze-and-excitation network and pyramid pooling network into hyperspectral classification network and proposed a model based on the structure of 2D-3D hybrid convolution neural network, it can learn deeper spatial spectral features and fusion to improve the accuracy and speed of hyperspectral classification.\",\"PeriodicalId\":370739,\"journal\":{\"name\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2586803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2586803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperspectral image classification using 3D-2D CNN with multi-scale information extraction and fusion module
Classification is the focus and difficulty of hyperspectral imaging technology. Hyperspectral data have twodimensional spatial information and one-dimensional spectral information, which are presented as three-dimensional data blocks with large amount of information, meanwhile high-dimension, high nonlinearity and limited training samples bring great challenges. Deep learning can extract and analyze the features of target data step by step by building multi-layer deep nonlinear structure. The advanced feature, multi scale abstract information extracted by convolution neural network applied to image processing can improve the classification accuracy of complex hyperspectral data. We regard pixel level hyperspectral classification as semantic segmentation network, and creatively introduce squeeze-and-excitation network and pyramid pooling network into hyperspectral classification network and proposed a model based on the structure of 2D-3D hybrid convolution neural network, it can learn deeper spatial spectral features and fusion to improve the accuracy and speed of hyperspectral classification.