{"title":"具有临界生长的分数阶Kirchhoff方程的浓缩解","authors":"V. Ambrosio","doi":"10.3233/ASY-191543","DOIUrl":null,"url":null,"abstract":"In this paper we consider the following class of fractional Kirchhoff equations with critical growth: \\begin{equation*} \\left\\{ \\begin{array}{ll} \\left(\\varepsilon^{2s}a+\\varepsilon^{4s-3}b\\int_{\\mathbb{R}^{3}}|(-\\Delta)^{\\frac{s}{2}}u|^{2}dx\\right)(-\\Delta)^{s}u+V(x)u=f(u)+|u|^{2^{*}_{s}-2}u \\quad &\\mbox{ in } \\mathbb{R}^{3}, \\\\ u\\in H^{s}(\\mathbb{R}^{3}), \\quad u>0 &\\mbox{ in } \\mathbb{R}^{3}, \\end{array} \\right. \\end{equation*} where $\\varepsilon>0$ is a small parameter, $a, b>0$ are constants, $s\\in (\\frac{3}{4}, 1)$, $2^{*}_{s}=\\frac{6}{3-2s}$ is the fractional critical exponent, $(-\\Delta)^{s}$ is the fractional Laplacian operator, $V$ is a positive continuous potential and $f$ is a superlinear continuous function with subcritical growth. Using penalization techniques and variational methods, we prove the existence of a family of positive solutions $u_{\\varepsilon}$ which concentrates around a local minimum of $V$ as $\\varepsilon\\rightarrow 0$.","PeriodicalId":311016,"journal":{"name":"Nonlinear Fractional Schrödinger Equations in R^N","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Concentrating Solutions for a Fractional Kirchhoff Equation with Critical Growth\",\"authors\":\"V. Ambrosio\",\"doi\":\"10.3233/ASY-191543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the following class of fractional Kirchhoff equations with critical growth: \\\\begin{equation*} \\\\left\\\\{ \\\\begin{array}{ll} \\\\left(\\\\varepsilon^{2s}a+\\\\varepsilon^{4s-3}b\\\\int_{\\\\mathbb{R}^{3}}|(-\\\\Delta)^{\\\\frac{s}{2}}u|^{2}dx\\\\right)(-\\\\Delta)^{s}u+V(x)u=f(u)+|u|^{2^{*}_{s}-2}u \\\\quad &\\\\mbox{ in } \\\\mathbb{R}^{3}, \\\\\\\\ u\\\\in H^{s}(\\\\mathbb{R}^{3}), \\\\quad u>0 &\\\\mbox{ in } \\\\mathbb{R}^{3}, \\\\end{array} \\\\right. \\\\end{equation*} where $\\\\varepsilon>0$ is a small parameter, $a, b>0$ are constants, $s\\\\in (\\\\frac{3}{4}, 1)$, $2^{*}_{s}=\\\\frac{6}{3-2s}$ is the fractional critical exponent, $(-\\\\Delta)^{s}$ is the fractional Laplacian operator, $V$ is a positive continuous potential and $f$ is a superlinear continuous function with subcritical growth. Using penalization techniques and variational methods, we prove the existence of a family of positive solutions $u_{\\\\varepsilon}$ which concentrates around a local minimum of $V$ as $\\\\varepsilon\\\\rightarrow 0$.\",\"PeriodicalId\":311016,\"journal\":{\"name\":\"Nonlinear Fractional Schrödinger Equations in R^N\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Fractional Schrödinger Equations in R^N\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-191543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Fractional Schrödinger Equations in R^N","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-191543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concentrating Solutions for a Fractional Kirchhoff Equation with Critical Growth
In this paper we consider the following class of fractional Kirchhoff equations with critical growth: \begin{equation*} \left\{ \begin{array}{ll} \left(\varepsilon^{2s}a+\varepsilon^{4s-3}b\int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}u|^{2}dx\right)(-\Delta)^{s}u+V(x)u=f(u)+|u|^{2^{*}_{s}-2}u \quad &\mbox{ in } \mathbb{R}^{3}, \\ u\in H^{s}(\mathbb{R}^{3}), \quad u>0 &\mbox{ in } \mathbb{R}^{3}, \end{array} \right. \end{equation*} where $\varepsilon>0$ is a small parameter, $a, b>0$ are constants, $s\in (\frac{3}{4}, 1)$, $2^{*}_{s}=\frac{6}{3-2s}$ is the fractional critical exponent, $(-\Delta)^{s}$ is the fractional Laplacian operator, $V$ is a positive continuous potential and $f$ is a superlinear continuous function with subcritical growth. Using penalization techniques and variational methods, we prove the existence of a family of positive solutions $u_{\varepsilon}$ which concentrates around a local minimum of $V$ as $\varepsilon\rightarrow 0$.