基于形态分解和cGAN的二值化

Cheng-Pan Hsieh, Shih-Kai Lee, Ya-Yi Liao, R. Huang, Jung-Hua Wang
{"title":"基于形态分解和cGAN的二值化","authors":"Cheng-Pan Hsieh, Shih-Kai Lee, Ya-Yi Liao, R. Huang, Jung-Hua Wang","doi":"10.1109/AIVR46125.2019.00044","DOIUrl":null,"url":null,"abstract":"This paper presents a novel binarization scheme for stained decipherable patterns. First, the input image is downsized, which not only saves the computation time, but the key features necessary for the successful decoding is preserved. Then, high or low contrast areas are decomposed by applying morphological operators to the downsized gray image, and subtracting the two resulting output images from each other. If necessary, these areas are further subjected to decomposition to obtain finer separation of regions. After the preprocessing, the binarization can be done either by GMM to estimate a binarization threshold for each region, or the binarization problem is treated as an image-translation task and hence the conditional generative adversarial network (cGAN) is trained using the high or low contrast areas as conditional inputs.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binarization Using Morphological Decomposition Followed by cGAN\",\"authors\":\"Cheng-Pan Hsieh, Shih-Kai Lee, Ya-Yi Liao, R. Huang, Jung-Hua Wang\",\"doi\":\"10.1109/AIVR46125.2019.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel binarization scheme for stained decipherable patterns. First, the input image is downsized, which not only saves the computation time, but the key features necessary for the successful decoding is preserved. Then, high or low contrast areas are decomposed by applying morphological operators to the downsized gray image, and subtracting the two resulting output images from each other. If necessary, these areas are further subjected to decomposition to obtain finer separation of regions. After the preprocessing, the binarization can be done either by GMM to estimate a binarization threshold for each region, or the binarization problem is treated as an image-translation task and hence the conditional generative adversarial network (cGAN) is trained using the high or low contrast areas as conditional inputs.\",\"PeriodicalId\":274566,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR46125.2019.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的染色可破译图案二值化方案。首先,将输入图像缩小,不仅节省了计算时间,而且保留了成功解码所需的关键特征。然后,通过形态学算子对缩小后的灰度图像进行高对比度或低对比度区域的分解,并将两个输出图像相互相减。如有必要,这些区域进一步进行分解,以获得更精细的区域分离。预处理后,二值化可以通过GMM来估计每个区域的二值化阈值,或者将二值化问题视为图像翻译任务,从而使用高对比度或低对比度区域作为条件输入来训练条件生成对抗网络(cGAN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binarization Using Morphological Decomposition Followed by cGAN
This paper presents a novel binarization scheme for stained decipherable patterns. First, the input image is downsized, which not only saves the computation time, but the key features necessary for the successful decoding is preserved. Then, high or low contrast areas are decomposed by applying morphological operators to the downsized gray image, and subtracting the two resulting output images from each other. If necessary, these areas are further subjected to decomposition to obtain finer separation of regions. After the preprocessing, the binarization can be done either by GMM to estimate a binarization threshold for each region, or the binarization problem is treated as an image-translation task and hence the conditional generative adversarial network (cGAN) is trained using the high or low contrast areas as conditional inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信