基于智能学习的电传控制系统故障识别与诊断

Zhen Qian, Yan Liang, Cunbao Ma, Zhenyao Zhao, A. Yao, Jing Qu
{"title":"基于智能学习的电传控制系统故障识别与诊断","authors":"Zhen Qian, Yan Liang, Cunbao Ma, Zhenyao Zhao, A. Yao, Jing Qu","doi":"10.1109/ICMSP55950.2022.9859019","DOIUrl":null,"url":null,"abstract":"This paper analyzes the residual sequence between the output of the fitting model and the real flight parameter data, extracts time-domain eigenvalues that can represent the characteristics of the residual sequence through the fault injection method, reduces the dimension and makes mathematical statistics of time-domain eigenvalues of the residual sequence by using Principal Component Analysis, realizes the fault identification of aircraft fly-by-wire control system, and finally classifies time-domain eigenvalues of the aircraft residual sequence by using Extreme Learning Machine, realize the fault diagnosis of aircraft fly-by-wire control system.","PeriodicalId":114259,"journal":{"name":"2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault Identification and Diagnosis of Fly-by-wire Control System Based on Intelligent Learning\",\"authors\":\"Zhen Qian, Yan Liang, Cunbao Ma, Zhenyao Zhao, A. Yao, Jing Qu\",\"doi\":\"10.1109/ICMSP55950.2022.9859019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the residual sequence between the output of the fitting model and the real flight parameter data, extracts time-domain eigenvalues that can represent the characteristics of the residual sequence through the fault injection method, reduces the dimension and makes mathematical statistics of time-domain eigenvalues of the residual sequence by using Principal Component Analysis, realizes the fault identification of aircraft fly-by-wire control system, and finally classifies time-domain eigenvalues of the aircraft residual sequence by using Extreme Learning Machine, realize the fault diagnosis of aircraft fly-by-wire control system.\",\"PeriodicalId\":114259,\"journal\":{\"name\":\"2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSP55950.2022.9859019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSP55950.2022.9859019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对拟合模型输出与实际飞行参数数据之间的残差序列进行分析,通过故障注入法提取能表征残差序列特征的时域特征值,并利用主成分分析对残差序列的时域特征值进行降维和数理统计,实现了飞机电传控制系统的故障识别。最后利用极限学习机对飞机残差序列的时域特征值进行分类,实现飞机电传控制系统的故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Identification and Diagnosis of Fly-by-wire Control System Based on Intelligent Learning
This paper analyzes the residual sequence between the output of the fitting model and the real flight parameter data, extracts time-domain eigenvalues that can represent the characteristics of the residual sequence through the fault injection method, reduces the dimension and makes mathematical statistics of time-domain eigenvalues of the residual sequence by using Principal Component Analysis, realizes the fault identification of aircraft fly-by-wire control system, and finally classifies time-domain eigenvalues of the aircraft residual sequence by using Extreme Learning Machine, realize the fault diagnosis of aircraft fly-by-wire control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信