{"title":"扩展k元n立方的连通性和可诊断性","authors":"Mujiangshan Wang, Yuqing Lin, Shiying Wang","doi":"10.1051/ita/2017008","DOIUrl":null,"url":null,"abstract":"Connectivity and Diagnosability play an important role in measuring the fault tolerance of interconnection networks. As a topology structure of interconnection networks, the expanded k -ary n -cube X Q k n has many good properties. In this paper, we prove that (1) the connectivity of X Q k n is 4 n ; (2) the nature connectivity of X Q k n is 8 n − 4; (3) the nature diagnosability of X Q k n under the PMC model and MM ∗ model is 8 n − 3 for n ≥ 2.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The connectivity and nature diagnosability of expanded k-ary n-cubes\",\"authors\":\"Mujiangshan Wang, Yuqing Lin, Shiying Wang\",\"doi\":\"10.1051/ita/2017008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connectivity and Diagnosability play an important role in measuring the fault tolerance of interconnection networks. As a topology structure of interconnection networks, the expanded k -ary n -cube X Q k n has many good properties. In this paper, we prove that (1) the connectivity of X Q k n is 4 n ; (2) the nature connectivity of X Q k n is 8 n − 4; (3) the nature diagnosability of X Q k n under the PMC model and MM ∗ model is 8 n − 3 for n ≥ 2.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2017008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2017008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
Connectivity and Diagnosability竞争的重要角色在测量interconnection之断层容忍网络。作为互联网络的基本结构,扩展的k -ary -cube X - k有很多好特性。在这篇文章,我们证明那connectivity》(1)X Q 4 k n是n;(2) X之自然connectivity Q 8 k n是n−4;Q(3)之自然diagnosability X k n下《模型和8毫米∗模型是私营军事公司(n−3 for n≥2。
The connectivity and nature diagnosability of expanded k-ary n-cubes
Connectivity and Diagnosability play an important role in measuring the fault tolerance of interconnection networks. As a topology structure of interconnection networks, the expanded k -ary n -cube X Q k n has many good properties. In this paper, we prove that (1) the connectivity of X Q k n is 4 n ; (2) the nature connectivity of X Q k n is 8 n − 4; (3) the nature diagnosability of X Q k n under the PMC model and MM ∗ model is 8 n − 3 for n ≥ 2.