基于模糊脉冲神经P系统的知识表示

Tao Wang, Jun Wang, Hong Peng, Yanli Deng
{"title":"基于模糊脉冲神经P系统的知识表示","authors":"Tao Wang, Jun Wang, Hong Peng, Yanli Deng","doi":"10.1109/BICTA.2010.5645191","DOIUrl":null,"url":null,"abstract":"This paper presents a fuzzy spiking neural P system (FSN P system) to represent the fuzzy production rules in a knowledge base of a rule-based system, where the certainty factors of fuzzy production rules and the truth values of propositions are described by trapezoidal fuzzy numbers. In the proposed FSN P system, the definition of traditional neurons has been extended. The neurons are divided into two types: proposition neurons and rule neurons; the content of each neuron is a trapezoidal fuzzy number in [0, 1] instead of an integer. Also the fuzzy reasoning process can be modeled by the proposed FSN P system.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Knowledge representation using fuzzy spiking neural P system\",\"authors\":\"Tao Wang, Jun Wang, Hong Peng, Yanli Deng\",\"doi\":\"10.1109/BICTA.2010.5645191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fuzzy spiking neural P system (FSN P system) to represent the fuzzy production rules in a knowledge base of a rule-based system, where the certainty factors of fuzzy production rules and the truth values of propositions are described by trapezoidal fuzzy numbers. In the proposed FSN P system, the definition of traditional neurons has been extended. The neurons are divided into two types: proposition neurons and rule neurons; the content of each neuron is a trapezoidal fuzzy number in [0, 1] instead of an integer. Also the fuzzy reasoning process can be modeled by the proposed FSN P system.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一个模糊尖峰神经P系统(FSN P系统)来表示基于规则系统知识库中的模糊产生规则,其中模糊产生规则的确定性因子和命题的真值用梯形模糊数来描述。在该系统中,对传统神经元的定义进行了扩展。神经元分为命题神经元和规则神经元两类;每个神经元的内容是[0,1]中的梯形模糊数,而不是整数。此外,该模糊推理过程也可以用FSN - P系统建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge representation using fuzzy spiking neural P system
This paper presents a fuzzy spiking neural P system (FSN P system) to represent the fuzzy production rules in a knowledge base of a rule-based system, where the certainty factors of fuzzy production rules and the truth values of propositions are described by trapezoidal fuzzy numbers. In the proposed FSN P system, the definition of traditional neurons has been extended. The neurons are divided into two types: proposition neurons and rule neurons; the content of each neuron is a trapezoidal fuzzy number in [0, 1] instead of an integer. Also the fuzzy reasoning process can be modeled by the proposed FSN P system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信