通过跨应用程序协调减少高性能计算系统中的I/O干扰

Matthieu Dorier, Gabriel Antoniu, R. Ross, D. Kimpe, Shadi Ibrahim
{"title":"通过跨应用程序协调减少高性能计算系统中的I/O干扰","authors":"Matthieu Dorier, Gabriel Antoniu, R. Ross, D. Kimpe, Shadi Ibrahim","doi":"10.1109/IPDPS.2014.27","DOIUrl":null,"url":null,"abstract":"Unmatched computation and storage performance in new HPC systems have led to a plethora of I/O optimizations ranging from application-side collective I/O to network and disk-level request scheduling on the file system side. As we deal with ever larger machines, the interference produced by multiple applications accessing a shared parallel file system in a concurrent manner becomes a major problem. Interference often breaks single-application I/O optimizations, dramatically degrading application I/O performance and, as a result, lowering machine wide efficiency. This paper focuses on CALCioM, a framework that aims to mitigate I/O interference through the dynamic selection of appropriate scheduling policies. CALCioM allows several applications running on a supercomputer to communicate and coordinate their I/O strategy in order to avoid interfering with one another. In this work, we examine four I/O strategies that can be accommodated in this framework: serializing, interrupting, interfering and coordinating. Experiments on Argonne's BG/P Surveyor machine and on several clusters of the French Grid'5000 show how CALCioM can be used to efficiently and transparently improve the scheduling strategy between two otherwise interfering applications, given specified metrics of machine wide efficiency.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"CALCioM: Mitigating I/O Interference in HPC Systems through Cross-Application Coordination\",\"authors\":\"Matthieu Dorier, Gabriel Antoniu, R. Ross, D. Kimpe, Shadi Ibrahim\",\"doi\":\"10.1109/IPDPS.2014.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmatched computation and storage performance in new HPC systems have led to a plethora of I/O optimizations ranging from application-side collective I/O to network and disk-level request scheduling on the file system side. As we deal with ever larger machines, the interference produced by multiple applications accessing a shared parallel file system in a concurrent manner becomes a major problem. Interference often breaks single-application I/O optimizations, dramatically degrading application I/O performance and, as a result, lowering machine wide efficiency. This paper focuses on CALCioM, a framework that aims to mitigate I/O interference through the dynamic selection of appropriate scheduling policies. CALCioM allows several applications running on a supercomputer to communicate and coordinate their I/O strategy in order to avoid interfering with one another. In this work, we examine four I/O strategies that can be accommodated in this framework: serializing, interrupting, interfering and coordinating. Experiments on Argonne's BG/P Surveyor machine and on several clusters of the French Grid'5000 show how CALCioM can be used to efficiently and transparently improve the scheduling strategy between two otherwise interfering applications, given specified metrics of machine wide efficiency.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

在新的HPC系统中,无与伦比的计算和存储性能导致了大量的I/O优化,从应用程序端的集体I/O到文件系统端的网络和磁盘级请求调度。当我们处理越来越大的机器时,多个应用程序以并发方式访问共享并行文件系统所产生的干扰成为一个主要问题。干扰通常会破坏单个应用程序的I/O优化,从而显著降低应用程序的I/O性能,从而降低整个机器的效率。本文重点介绍了calcom框架,该框架旨在通过动态选择适当的调度策略来减轻I/O干扰。calcom允许在超级计算机上运行的几个应用程序通信和协调它们的I/O策略,以避免相互干扰。在这项工作中,我们研究了可以在这个框架中容纳的四种I/O策略:序列化、中断、干扰和协调。在Argonne的BG/P Surveyor机器和法国电网5000的几个集群上进行的实验表明,在给定特定的机器效率指标的情况下,如何使用CALCioM来高效、透明地改进两个干扰应用程序之间的调度策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CALCioM: Mitigating I/O Interference in HPC Systems through Cross-Application Coordination
Unmatched computation and storage performance in new HPC systems have led to a plethora of I/O optimizations ranging from application-side collective I/O to network and disk-level request scheduling on the file system side. As we deal with ever larger machines, the interference produced by multiple applications accessing a shared parallel file system in a concurrent manner becomes a major problem. Interference often breaks single-application I/O optimizations, dramatically degrading application I/O performance and, as a result, lowering machine wide efficiency. This paper focuses on CALCioM, a framework that aims to mitigate I/O interference through the dynamic selection of appropriate scheduling policies. CALCioM allows several applications running on a supercomputer to communicate and coordinate their I/O strategy in order to avoid interfering with one another. In this work, we examine four I/O strategies that can be accommodated in this framework: serializing, interrupting, interfering and coordinating. Experiments on Argonne's BG/P Surveyor machine and on several clusters of the French Grid'5000 show how CALCioM can be used to efficiently and transparently improve the scheduling strategy between two otherwise interfering applications, given specified metrics of machine wide efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信