无线可充电传感器网络中无人机充电调度优化

Yanheng Liu, Hongyang Pan, Geng Sun, Aimin Wang
{"title":"无线可充电传感器网络中无人机充电调度优化","authors":"Yanheng Liu, Hongyang Pan, Geng Sun, Aimin Wang","doi":"10.1109/ISCC53001.2021.9631448","DOIUrl":null,"url":null,"abstract":"Wireless rechargeable sensor networks (WRSNs) with a charging UAV (CUAV) have the broad application prospects for the power supply of the rechargeable sensor nodes (SNs). However, how to schedule the CUAV so that improving the charging efficiency of the whole system is still a vital problem. In this paper, we formulate a scheduling optimization problem of CUAV (SOPCUAV) to jointly reduce the hovering number of the CUAV and the duplicate coverage of SNs for enhancing the charging performance. Then, we propose an improved particle swarm optimization (IPSO) algorithm with the flexible dimension mechanism, using K - means operator to find the hovering position of CUAV and punishment and compensation mechanism to solve the formulated SOPCUAV. Simulation results demonstrate the effectiveness and performance of the proposed algorithm.","PeriodicalId":270786,"journal":{"name":"2021 IEEE Symposium on Computers and Communications (ISCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scheduling Optimization of Charging UAV in Wireless Rechargeable Sensor Networks\",\"authors\":\"Yanheng Liu, Hongyang Pan, Geng Sun, Aimin Wang\",\"doi\":\"10.1109/ISCC53001.2021.9631448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless rechargeable sensor networks (WRSNs) with a charging UAV (CUAV) have the broad application prospects for the power supply of the rechargeable sensor nodes (SNs). However, how to schedule the CUAV so that improving the charging efficiency of the whole system is still a vital problem. In this paper, we formulate a scheduling optimization problem of CUAV (SOPCUAV) to jointly reduce the hovering number of the CUAV and the duplicate coverage of SNs for enhancing the charging performance. Then, we propose an improved particle swarm optimization (IPSO) algorithm with the flexible dimension mechanism, using K - means operator to find the hovering position of CUAV and punishment and compensation mechanism to solve the formulated SOPCUAV. Simulation results demonstrate the effectiveness and performance of the proposed algorithm.\",\"PeriodicalId\":270786,\"journal\":{\"name\":\"2021 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC53001.2021.9631448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC53001.2021.9631448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

搭载可充电无人机的无线可充电传感器网络(WRSNs)在可充电传感器节点供电方面具有广阔的应用前景。然而,如何对无人机进行调度以提高整个系统的充电效率仍然是一个至关重要的问题。本文提出了一种无人驾驶飞行器的调度优化问题(SOPCUAV),以共同减少无人驾驶飞行器的悬停次数和SNs的重复覆盖,从而提高充电性能。在此基础上,提出了一种改进的粒子群优化算法(IPSO),该算法采用柔性维数机制,利用K -均值算子求解悬停位置,并用惩罚补偿机制求解拟定的SOPCUAV。仿真结果验证了该算法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling Optimization of Charging UAV in Wireless Rechargeable Sensor Networks
Wireless rechargeable sensor networks (WRSNs) with a charging UAV (CUAV) have the broad application prospects for the power supply of the rechargeable sensor nodes (SNs). However, how to schedule the CUAV so that improving the charging efficiency of the whole system is still a vital problem. In this paper, we formulate a scheduling optimization problem of CUAV (SOPCUAV) to jointly reduce the hovering number of the CUAV and the duplicate coverage of SNs for enhancing the charging performance. Then, we propose an improved particle swarm optimization (IPSO) algorithm with the flexible dimension mechanism, using K - means operator to find the hovering position of CUAV and punishment and compensation mechanism to solve the formulated SOPCUAV. Simulation results demonstrate the effectiveness and performance of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信