一类以Duhamel积为乘法的Banach代数的极大理想空间描述

M. Karaev, H. Tuna †
{"title":"一类以Duhamel积为乘法的Banach代数的极大理想空间描述","authors":"M. Karaev, H. Tuna †","doi":"10.1080/02781070410001722332","DOIUrl":null,"url":null,"abstract":"Let denote the vector space of complex-valued functions that are continuous on the closed unit disk  and have nth order derivatives in D, which can be extended to functions continuous on . Let denote the subspace of the functions which are analytic in D. We prove that is a Banach algebra with multiplication as Duhamel product and describe its maximal ideal space. We also describe commutant and strong cyclic vectors of the integration operator","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Description of Maximal Ideal Space of Some Banach Algebra with Multiplication as Duhamel Product\",\"authors\":\"M. Karaev, H. Tuna †\",\"doi\":\"10.1080/02781070410001722332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let denote the vector space of complex-valued functions that are continuous on the closed unit disk  and have nth order derivatives in D, which can be extended to functions continuous on . Let denote the subspace of the functions which are analytic in D. We prove that is a Banach algebra with multiplication as Duhamel product and describe its maximal ideal space. We also describe commutant and strong cyclic vectors of the integration operator\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070410001722332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070410001722332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

令表示在闭合单位圆盘上连续且在D上有n阶导数的复值函数的向量空间,它可以推广到在上连续的函数。设d中解析函数的子空间,证明了它是一个以Duhamel积为乘法的Banach代数,并描述了它的极大理想空间。我们还描述了积分算子的交换子向量和强循环向量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Description of Maximal Ideal Space of Some Banach Algebra with Multiplication as Duhamel Product
Let denote the vector space of complex-valued functions that are continuous on the closed unit disk  and have nth order derivatives in D, which can be extended to functions continuous on . Let denote the subspace of the functions which are analytic in D. We prove that is a Banach algebra with multiplication as Duhamel product and describe its maximal ideal space. We also describe commutant and strong cyclic vectors of the integration operator
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信