PProx:推荐即服务的高效隐私

Guillaume Rosinosky, Simon Da Silva, Sonia Ben Mokhtar, D. Négru, Laurent Réveillère, E. Rivière
{"title":"PProx:推荐即服务的高效隐私","authors":"Guillaume Rosinosky, Simon Da Silva, Sonia Ben Mokhtar, D. Négru, Laurent Réveillère, E. Rivière","doi":"10.1145/3464298.3476130","DOIUrl":null,"url":null,"abstract":"We present PProx, a system preventing recommendation-as-a-service (RaaS) providers from accessing sensitive data about the users of applications leveraging their services. PProx does not impact recommendations accuracy, is compatible with arbitrary recommendation algorithms, and has minimal deployment requirements. Its design combines two proxying layers directly running inside SGX enclaves at the RaaS provider side. These layers transparently pseudonymize users and items and hide links between the two, and PProx privacy guarantees are robust even to the corruption of one of these enclaves. We integrated PProx with Harness's Universal Recommender and evaluated it on a 27-node cluster. Our results indicate its ability to withstand a high number of requests with low end-to-end latency, horizontally scaling up to match increasing workloads of recommendations.","PeriodicalId":154994,"journal":{"name":"Proceedings of the 22nd International Middleware Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PProx: efficient privacy for recommendation-as-a-service\",\"authors\":\"Guillaume Rosinosky, Simon Da Silva, Sonia Ben Mokhtar, D. Négru, Laurent Réveillère, E. Rivière\",\"doi\":\"10.1145/3464298.3476130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present PProx, a system preventing recommendation-as-a-service (RaaS) providers from accessing sensitive data about the users of applications leveraging their services. PProx does not impact recommendations accuracy, is compatible with arbitrary recommendation algorithms, and has minimal deployment requirements. Its design combines two proxying layers directly running inside SGX enclaves at the RaaS provider side. These layers transparently pseudonymize users and items and hide links between the two, and PProx privacy guarantees are robust even to the corruption of one of these enclaves. We integrated PProx with Harness's Universal Recommender and evaluated it on a 27-node cluster. Our results indicate its ability to withstand a high number of requests with low end-to-end latency, horizontally scaling up to match increasing workloads of recommendations.\",\"PeriodicalId\":154994,\"journal\":{\"name\":\"Proceedings of the 22nd International Middleware Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd International Middleware Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3464298.3476130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Middleware Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464298.3476130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们介绍了PProx,一个防止推荐即服务(RaaS)提供商访问利用其服务的应用程序用户的敏感数据的系统。PProx不影响推荐的准确性,与任意推荐算法兼容,并且具有最小的部署要求。它的设计结合了两个代理层,直接运行在RaaS提供商端的SGX飞地内。这些层透明地对用户和项目进行假名化,并隐藏两者之间的链接,即使其中一个飞地遭到破坏,PProx的隐私保证也很强大。我们将PProx与Harness的通用推荐器集成在一起,并在27个节点的集群上对其进行了评估。我们的结果表明,它能够以较低的端到端延迟承受大量请求,并水平扩展以匹配不断增加的推荐工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PProx: efficient privacy for recommendation-as-a-service
We present PProx, a system preventing recommendation-as-a-service (RaaS) providers from accessing sensitive data about the users of applications leveraging their services. PProx does not impact recommendations accuracy, is compatible with arbitrary recommendation algorithms, and has minimal deployment requirements. Its design combines two proxying layers directly running inside SGX enclaves at the RaaS provider side. These layers transparently pseudonymize users and items and hide links between the two, and PProx privacy guarantees are robust even to the corruption of one of these enclaves. We integrated PProx with Harness's Universal Recommender and evaluated it on a 27-node cluster. Our results indicate its ability to withstand a high number of requests with low end-to-end latency, horizontally scaling up to match increasing workloads of recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信