噪声GF(2)矩阵上的软线性代数

T. Moon, J. Gunther
{"title":"噪声GF(2)矩阵上的软线性代数","authors":"T. Moon, J. Gunther","doi":"10.1109/ietc54973.2022.9796866","DOIUrl":null,"url":null,"abstract":"In this paper we describe methods of finding soft solutions to the linear equation A x=d, where A and d have GF(2) elements but the elements of A and d are only known probabilistically. The solutions described here provide probabilities on the elements of the solution x. Two solution methods are presented. The first method is similar to the LU factorization algorithm. Solution using this technique makes use of a soft inner product lemma proved here. The second method performs Gauss-Jordan reduction of hard and soft matrices, and provides only a solution.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soft Linear Algebra over Noisy GF(2) matrices\",\"authors\":\"T. Moon, J. Gunther\",\"doi\":\"10.1109/ietc54973.2022.9796866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe methods of finding soft solutions to the linear equation A x=d, where A and d have GF(2) elements but the elements of A and d are only known probabilistically. The solutions described here provide probabilities on the elements of the solution x. Two solution methods are presented. The first method is similar to the LU factorization algorithm. Solution using this technique makes use of a soft inner product lemma proved here. The second method performs Gauss-Jordan reduction of hard and soft matrices, and provides only a solution.\",\"PeriodicalId\":251518,\"journal\":{\"name\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ietc54973.2022.9796866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了求解线性方程A x=d的软解的方法,其中A和d具有GF(2)元素,但A和d的元素仅为概率已知。这里描述的解提供了解x的元素的概率。提出了两种解方法。第一种方法类似于LU分解算法。使用这种方法的解利用了这里证明的一个软内积引理。第二种方法对硬矩阵和软矩阵进行高斯约简,并且只提供一个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Linear Algebra over Noisy GF(2) matrices
In this paper we describe methods of finding soft solutions to the linear equation A x=d, where A and d have GF(2) elements but the elements of A and d are only known probabilistically. The solutions described here provide probabilities on the elements of the solution x. Two solution methods are presented. The first method is similar to the LU factorization algorithm. Solution using this technique makes use of a soft inner product lemma proved here. The second method performs Gauss-Jordan reduction of hard and soft matrices, and provides only a solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信