利用社会标签的三方网络进行网络聚类

Caimei Lu, Xin Chen, Eun Kyo Park
{"title":"利用社会标签的三方网络进行网络聚类","authors":"Caimei Lu, Xin Chen, Eun Kyo Park","doi":"10.1145/1645953.1646167","DOIUrl":null,"url":null,"abstract":"In this poster, we investigate how to enhance web clustering by leveraging the tripartite network of social tagging systems. We propose a clustering method, called \"Tripartite Clustering\", which cluster the three types of nodes (resources, users and tags) simultaneously based on the links in the social tagging network. The proposed method is experimented on a real-world social tagging dataset sampled from del.icio.us. We also compare the proposed clustering approach with K-means. All the clustering results are evaluated against a human-maintained web directory. The experimental results show that Tripartite Clustering significantly outperforms the content-based K-means approach and achieves performance close to that of social annotation-based K-means whereas generating much more useful information.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Exploit the tripartite network of social tagging for web clustering\",\"authors\":\"Caimei Lu, Xin Chen, Eun Kyo Park\",\"doi\":\"10.1145/1645953.1646167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this poster, we investigate how to enhance web clustering by leveraging the tripartite network of social tagging systems. We propose a clustering method, called \\\"Tripartite Clustering\\\", which cluster the three types of nodes (resources, users and tags) simultaneously based on the links in the social tagging network. The proposed method is experimented on a real-world social tagging dataset sampled from del.icio.us. We also compare the proposed clustering approach with K-means. All the clustering results are evaluated against a human-maintained web directory. The experimental results show that Tripartite Clustering significantly outperforms the content-based K-means approach and achieves performance close to that of social annotation-based K-means whereas generating much more useful information.\",\"PeriodicalId\":286251,\"journal\":{\"name\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1645953.1646167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

在这张海报中,我们研究了如何通过利用社会标签系统的三方网络来增强网络聚类。我们提出了一种“三方聚类”的聚类方法,即基于社交标签网络中的链接,将资源、用户和标签这三类节点同时聚类。该方法在del.icio.us的一个真实社会标签数据集上进行了实验。我们还将提出的聚类方法与K-means进行了比较。所有的聚类结果都是根据人工维护的web目录进行评估的。实验结果表明,三方聚类显著优于基于内容的K-means方法,其性能接近基于社会注释的K-means方法,同时生成更多有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploit the tripartite network of social tagging for web clustering
In this poster, we investigate how to enhance web clustering by leveraging the tripartite network of social tagging systems. We propose a clustering method, called "Tripartite Clustering", which cluster the three types of nodes (resources, users and tags) simultaneously based on the links in the social tagging network. The proposed method is experimented on a real-world social tagging dataset sampled from del.icio.us. We also compare the proposed clustering approach with K-means. All the clustering results are evaluated against a human-maintained web directory. The experimental results show that Tripartite Clustering significantly outperforms the content-based K-means approach and achieves performance close to that of social annotation-based K-means whereas generating much more useful information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信