{"title":"用透射电子显微镜观察蓝宝石、尖晶石和镁砂纳米压痕下的变形","authors":"S. J. Lloyd, J. Molina-Aldareguia, W. Clegg","doi":"10.1080/01418610208235708","DOIUrl":null,"url":null,"abstract":"Abstract Cross-sections through nanoindentions in the (001) surface of sapphire, spinel and magnesia have been examined in the transmission electron microscope. Electron-transparent sections were prepared using a focused ion beam microscope. All three recognized high-temperature slip systems were observed in sapphire, while spinel deformed in slip bands on the {111} planes. Evidence was obtained for slip on {110} planes in magnesia and the possibility that slip also occurs on {100} planes is discussed as an explanation of its high ratio of hardness to yield stress.","PeriodicalId":114492,"journal":{"name":"Philosophical Magazine A","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Deformation under nanoindents in sapphire, spinel and magnesia examined using transmission electron microscopy\",\"authors\":\"S. J. Lloyd, J. Molina-Aldareguia, W. Clegg\",\"doi\":\"10.1080/01418610208235708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cross-sections through nanoindentions in the (001) surface of sapphire, spinel and magnesia have been examined in the transmission electron microscope. Electron-transparent sections were prepared using a focused ion beam microscope. All three recognized high-temperature slip systems were observed in sapphire, while spinel deformed in slip bands on the {111} planes. Evidence was obtained for slip on {110} planes in magnesia and the possibility that slip also occurs on {100} planes is discussed as an explanation of its high ratio of hardness to yield stress.\",\"PeriodicalId\":114492,\"journal\":{\"name\":\"Philosophical Magazine A\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01418610208235708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01418610208235708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deformation under nanoindents in sapphire, spinel and magnesia examined using transmission electron microscopy
Abstract Cross-sections through nanoindentions in the (001) surface of sapphire, spinel and magnesia have been examined in the transmission electron microscope. Electron-transparent sections were prepared using a focused ion beam microscope. All three recognized high-temperature slip systems were observed in sapphire, while spinel deformed in slip bands on the {111} planes. Evidence was obtained for slip on {110} planes in magnesia and the possibility that slip also occurs on {100} planes is discussed as an explanation of its high ratio of hardness to yield stress.