{"title":"基于低分辨率adc的上行海量MIMO量化功能设计","authors":"Lifu Liu, Songyan Xue, Yi Ma, N. Yi, R. Tafazolli","doi":"10.1109/VTC2021-Spring51267.2021.9448919","DOIUrl":null,"url":null,"abstract":"Quantization is the characterization of analogue-to-digital converters (ADC) in massive MIMO systems. The design of quantization function or quantization thresholds is found to relate to quantization step, which is the factor that adapts with the changing of transmit power and noise variance. With the objective of utilizing low-resolution ADC is reducing the cost of massive MIMO, we propose an idea as if it is necessary to have adaptive-threshold quantization function. It is found that when maximum-likelihood (ML) is employed as the detection method, having quantization thresholds fixed for low-resolution ADCs will not cause significant performance loss. Moreover, such fixed-threshold quantization function does not require any information of signal power which can reduce the hardware cost of ADCs. Simulations have been carried out in this paper to make comparisons between fixed-threshold and adaptive-threshold quantization regarding various factors.","PeriodicalId":194840,"journal":{"name":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Design of Quantization Functions for Uplink Massive MIMO with Low-Resolution ADCs\",\"authors\":\"Lifu Liu, Songyan Xue, Yi Ma, N. Yi, R. Tafazolli\",\"doi\":\"10.1109/VTC2021-Spring51267.2021.9448919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantization is the characterization of analogue-to-digital converters (ADC) in massive MIMO systems. The design of quantization function or quantization thresholds is found to relate to quantization step, which is the factor that adapts with the changing of transmit power and noise variance. With the objective of utilizing low-resolution ADC is reducing the cost of massive MIMO, we propose an idea as if it is necessary to have adaptive-threshold quantization function. It is found that when maximum-likelihood (ML) is employed as the detection method, having quantization thresholds fixed for low-resolution ADCs will not cause significant performance loss. Moreover, such fixed-threshold quantization function does not require any information of signal power which can reduce the hardware cost of ADCs. Simulations have been carried out in this paper to make comparisons between fixed-threshold and adaptive-threshold quantization regarding various factors.\",\"PeriodicalId\":194840,\"journal\":{\"name\":\"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Design of Quantization Functions for Uplink Massive MIMO with Low-Resolution ADCs
Quantization is the characterization of analogue-to-digital converters (ADC) in massive MIMO systems. The design of quantization function or quantization thresholds is found to relate to quantization step, which is the factor that adapts with the changing of transmit power and noise variance. With the objective of utilizing low-resolution ADC is reducing the cost of massive MIMO, we propose an idea as if it is necessary to have adaptive-threshold quantization function. It is found that when maximum-likelihood (ML) is employed as the detection method, having quantization thresholds fixed for low-resolution ADCs will not cause significant performance loss. Moreover, such fixed-threshold quantization function does not require any information of signal power which can reduce the hardware cost of ADCs. Simulations have been carried out in this paper to make comparisons between fixed-threshold and adaptive-threshold quantization regarding various factors.