以塞内加尔脑卒中患者为例:广义极值回归模型的应用

Aba Dio, E. Deme, Idrissa Sy, A. Diop
{"title":"以塞内加尔脑卒中患者为例:广义极值回归模型的应用","authors":"Aba Dio, E. Deme, Idrissa Sy, A. Diop","doi":"10.16929/ajas/2021.1497.259","DOIUrl":null,"url":null,"abstract":"Logistic regression model is widely used in many studies to investigate the relationship between a binary response variable Y and a set of potential predictors X. The binary response may represent, for example, the occurrence of some outcome of interest (Y=1 if the outcome occurred and Y=0 otherwise). When the dependent variable Y represents a rare event, the logistic regression model shows relevant drawbacks. In order to overcome these drawbacks we propose the Generalized Extreme Value (GEV) regression model. In particularly, we suggest the quantile function of the GEV distribution as link function. Strokes are a serious pathology and a neurological emergency involving the vital prognosis and the functional prognosis. In Senegal, strokes account for more than 30% of hospitalizations and are responsible for nearly two thirds of mortality. In this work, we use the GVE regression model for binary data to determine the risk factors leading to stroke and to develop a predictive model of life-threatening outcomes in central Sénégal.","PeriodicalId":332314,"journal":{"name":"African Journal of Applied Statistics","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A case study of Stroke patients in Senegal: application of Generalized extreme value regression model\",\"authors\":\"Aba Dio, E. Deme, Idrissa Sy, A. Diop\",\"doi\":\"10.16929/ajas/2021.1497.259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logistic regression model is widely used in many studies to investigate the relationship between a binary response variable Y and a set of potential predictors X. The binary response may represent, for example, the occurrence of some outcome of interest (Y=1 if the outcome occurred and Y=0 otherwise). When the dependent variable Y represents a rare event, the logistic regression model shows relevant drawbacks. In order to overcome these drawbacks we propose the Generalized Extreme Value (GEV) regression model. In particularly, we suggest the quantile function of the GEV distribution as link function. Strokes are a serious pathology and a neurological emergency involving the vital prognosis and the functional prognosis. In Senegal, strokes account for more than 30% of hospitalizations and are responsible for nearly two thirds of mortality. In this work, we use the GVE regression model for binary data to determine the risk factors leading to stroke and to develop a predictive model of life-threatening outcomes in central Sénégal.\",\"PeriodicalId\":332314,\"journal\":{\"name\":\"African Journal of Applied Statistics\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"African Journal of Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/ajas/2021.1497.259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/ajas/2021.1497.259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多研究中,逻辑回归模型被广泛用于研究二元响应变量Y与一组潜在预测因子x之间的关系。二元响应可以代表,例如,一些感兴趣的结果的发生(如果结果发生,Y=1,否则Y=0)。当因变量Y代表罕见事件时,逻辑回归模型显示出相关的缺陷。为了克服这些缺点,我们提出了广义极值(GEV)回归模型。特别地,我们建议将GEV分布的分位数函数作为链接函数。中风是一种严重的病理和神经急症,涉及生命预后和功能预后。在塞内加尔,中风占住院人数的30%以上,并造成近三分之二的死亡。在这项工作中,我们使用二元数据的GVE回归模型来确定导致中风的危险因素,并建立了中部ssamn危及生命的结果的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A case study of Stroke patients in Senegal: application of Generalized extreme value regression model
Logistic regression model is widely used in many studies to investigate the relationship between a binary response variable Y and a set of potential predictors X. The binary response may represent, for example, the occurrence of some outcome of interest (Y=1 if the outcome occurred and Y=0 otherwise). When the dependent variable Y represents a rare event, the logistic regression model shows relevant drawbacks. In order to overcome these drawbacks we propose the Generalized Extreme Value (GEV) regression model. In particularly, we suggest the quantile function of the GEV distribution as link function. Strokes are a serious pathology and a neurological emergency involving the vital prognosis and the functional prognosis. In Senegal, strokes account for more than 30% of hospitalizations and are responsible for nearly two thirds of mortality. In this work, we use the GVE regression model for binary data to determine the risk factors leading to stroke and to develop a predictive model of life-threatening outcomes in central Sénégal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信