基于神经网络的机器人紧急行为控制模型的VLSI实现

Jimmy Patel, Harsh Advani, Subhadeep Paul, Tapas Kumar Maiti
{"title":"基于神经网络的机器人紧急行为控制模型的VLSI实现","authors":"Jimmy Patel, Harsh Advani, Subhadeep Paul, Tapas Kumar Maiti","doi":"10.1109/DISCOVER55800.2022.9974734","DOIUrl":null,"url":null,"abstract":"This paper reports the VLSI implementation of NN (N eural N etwork) based emergent behavior model for high-speed robot control. Augmented FSM (F inite-S tate M achine) is considered to implement the emergent behavior. We performed a system level simulation using our proposed model. Then, we transformed the model to RTL (R egister-T ransfer L evel) for circuit simulation. In this study, we considered multiple-inputs and multiple-outputs NN. Our implementation method improves speed of execution and accuracy and compare the result with conventional neural network. For activation function in NN, we implemented sigmoid function with second order approximation to educe complexity. We used walking gesture of Kondo KHR-3HV robot to verify the model.","PeriodicalId":264177,"journal":{"name":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"VLSI Implementation of Neural Network Based Emergent Behavior Model for Robot Control\",\"authors\":\"Jimmy Patel, Harsh Advani, Subhadeep Paul, Tapas Kumar Maiti\",\"doi\":\"10.1109/DISCOVER55800.2022.9974734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the VLSI implementation of NN (N eural N etwork) based emergent behavior model for high-speed robot control. Augmented FSM (F inite-S tate M achine) is considered to implement the emergent behavior. We performed a system level simulation using our proposed model. Then, we transformed the model to RTL (R egister-T ransfer L evel) for circuit simulation. In this study, we considered multiple-inputs and multiple-outputs NN. Our implementation method improves speed of execution and accuracy and compare the result with conventional neural network. For activation function in NN, we implemented sigmoid function with second order approximation to educe complexity. We used walking gesture of Kondo KHR-3HV robot to verify the model.\",\"PeriodicalId\":264177,\"journal\":{\"name\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCOVER55800.2022.9974734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER55800.2022.9974734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报道了基于NN (N神经网络)的高速机器人紧急行为控制模型的VLSI实现。扩充FSM (F有限状态机)被认为是实现紧急行为。我们使用我们提出的模型进行了系统级仿真。然后,我们将模型转换为RTL (R寄存器- t传输L电平)进行电路仿真。在本研究中,我们考虑了多输入和多输出神经网络。我们的实现方法提高了执行速度和精度,并与传统神经网络的结果进行了比较。对于神经网络中的激活函数,我们采用二阶逼近的方法实现了sigmoid函数以降低复杂度。我们使用近藤KHR-3HV机器人的行走手势对模型进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VLSI Implementation of Neural Network Based Emergent Behavior Model for Robot Control
This paper reports the VLSI implementation of NN (N eural N etwork) based emergent behavior model for high-speed robot control. Augmented FSM (F inite-S tate M achine) is considered to implement the emergent behavior. We performed a system level simulation using our proposed model. Then, we transformed the model to RTL (R egister-T ransfer L evel) for circuit simulation. In this study, we considered multiple-inputs and multiple-outputs NN. Our implementation method improves speed of execution and accuracy and compare the result with conventional neural network. For activation function in NN, we implemented sigmoid function with second order approximation to educe complexity. We used walking gesture of Kondo KHR-3HV robot to verify the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信