基于可靠邻居像素的图像分割模糊聚类算法

Weiling Cai, Songcan Chen, Lei Lei
{"title":"基于可靠邻居像素的图像分割模糊聚类算法","authors":"Weiling Cai, Songcan Chen, Lei Lei","doi":"10.1109/CCPR.2009.5343993","DOIUrl":null,"url":null,"abstract":"In this paper, a fuzzy clustering algorithm using dependable neighbor pixels is proposed for image segmentation. In order to enhance the segmentation performance, the proposed algortihm utilizes the local statistical information to discriminate dependable neighbor pixels from undependable neighbor pixels, and then allows the labeling of the pixel to be influenced by the dependable neighbor pixels. This algorithm has two advantages: (1) the spatial information with high reliability is incorporated into the objective function so that the segmentation accuracy is guaranteed; (2) the intensity of the spatial constraints is automatically determined by the similarity meature so that the segmentation result is adaptive to the original image. The efficiency of the proposed algorithm is demonstrated by extensive segmentation experiments using both synthetic and real images.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Fuzzy Clustering Algorithm for Image Segmentation Using Dependable Neighbor Pixels\",\"authors\":\"Weiling Cai, Songcan Chen, Lei Lei\",\"doi\":\"10.1109/CCPR.2009.5343993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fuzzy clustering algorithm using dependable neighbor pixels is proposed for image segmentation. In order to enhance the segmentation performance, the proposed algortihm utilizes the local statistical information to discriminate dependable neighbor pixels from undependable neighbor pixels, and then allows the labeling of the pixel to be influenced by the dependable neighbor pixels. This algorithm has two advantages: (1) the spatial information with high reliability is incorporated into the objective function so that the segmentation accuracy is guaranteed; (2) the intensity of the spatial constraints is automatically determined by the similarity meature so that the segmentation result is adaptive to the original image. The efficiency of the proposed algorithm is demonstrated by extensive segmentation experiments using both synthetic and real images.\",\"PeriodicalId\":354468,\"journal\":{\"name\":\"2009 Chinese Conference on Pattern Recognition\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2009.5343993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5343993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于可靠相邻像素的模糊聚类算法。为了提高分割性能,该算法利用局部统计信息区分可靠和不可靠的邻居像素,然后允许像素的标记受可靠邻居像素的影响。该算法具有两个优点:(1)将高可靠性的空间信息纳入目标函数中,保证了分割精度;(2)由相似性度量自动确定空间约束的强度,使分割结果与原始图像自适应。通过对合成图像和真实图像的大量分割实验,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fuzzy Clustering Algorithm for Image Segmentation Using Dependable Neighbor Pixels
In this paper, a fuzzy clustering algorithm using dependable neighbor pixels is proposed for image segmentation. In order to enhance the segmentation performance, the proposed algortihm utilizes the local statistical information to discriminate dependable neighbor pixels from undependable neighbor pixels, and then allows the labeling of the pixel to be influenced by the dependable neighbor pixels. This algorithm has two advantages: (1) the spatial information with high reliability is incorporated into the objective function so that the segmentation accuracy is guaranteed; (2) the intensity of the spatial constraints is automatically determined by the similarity meature so that the segmentation result is adaptive to the original image. The efficiency of the proposed algorithm is demonstrated by extensive segmentation experiments using both synthetic and real images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信