实时行人检测和跟踪定制硬件

Junbin Wang, Ke Yan, Kaiyuan Guo, Jincheng Yu, Lingzhi Sui, Song Yao, Song Han, Yu Wang
{"title":"实时行人检测和跟踪定制硬件","authors":"Junbin Wang, Ke Yan, Kaiyuan Guo, Jincheng Yu, Lingzhi Sui, Song Yao, Song Han, Yu Wang","doi":"10.1145/2993452.2995268","DOIUrl":null,"url":null,"abstract":"Real-time pedestrian detection and tracking are vital to many applications, such as the interaction between drones and human. However, the high complexity of Convolutional Neural Network (CNN) makes them rely on powerful servers, thus is hard for mobile platforms like drones. In this paper, we propose a CNN-based real-time pedestrian detection and tracking system, which can achieve 14.7 fps detection and 200 fps tracking with only 3W.","PeriodicalId":198459,"journal":{"name":"2016 14th ACM/IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Real-time pedestrian detection and tracking on customized hardware\",\"authors\":\"Junbin Wang, Ke Yan, Kaiyuan Guo, Jincheng Yu, Lingzhi Sui, Song Yao, Song Han, Yu Wang\",\"doi\":\"10.1145/2993452.2995268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time pedestrian detection and tracking are vital to many applications, such as the interaction between drones and human. However, the high complexity of Convolutional Neural Network (CNN) makes them rely on powerful servers, thus is hard for mobile platforms like drones. In this paper, we propose a CNN-based real-time pedestrian detection and tracking system, which can achieve 14.7 fps detection and 200 fps tracking with only 3W.\",\"PeriodicalId\":198459,\"journal\":{\"name\":\"2016 14th ACM/IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th ACM/IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2993452.2995268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th ACM/IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993452.2995268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

实时行人检测和跟踪对于许多应用至关重要,例如无人机与人之间的交互。然而,卷积神经网络(CNN)的高复杂性使其依赖于强大的服务器,因此很难用于无人机等移动平台。本文提出了一种基于cnn的实时行人检测与跟踪系统,该系统仅用3W即可实现14.7 fps的检测和200 fps的跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time pedestrian detection and tracking on customized hardware
Real-time pedestrian detection and tracking are vital to many applications, such as the interaction between drones and human. However, the high complexity of Convolutional Neural Network (CNN) makes them rely on powerful servers, thus is hard for mobile platforms like drones. In this paper, we propose a CNN-based real-time pedestrian detection and tracking system, which can achieve 14.7 fps detection and 200 fps tracking with only 3W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信