分布式无上下文语法学习算法及其在视频分类中的应用

Jing Huang, D. Schonfeld
{"title":"分布式无上下文语法学习算法及其在视频分类中的应用","authors":"Jing Huang, D. Schonfeld","doi":"10.1109/VCIP.2012.6410829","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel statistical estimation algorithm to stochastic context-sensitive grammars (SCSGs). First, we show that the SCSGs model can be solved by decomposing it into several causal stochastic context-free grammars (SCFGs) models and each of these SCFGs models can be solved simultaneously using a fully synchronous distributed computing framework. An alternate updating scheme based approximate solution to multiple SCFGs is also provided under the assumption of a realistic sequential computing framework. A series of statistical algorithms are expected to learn SCFGs subsequently. The SGSCs can be then used to represent multiple-trajectory. Experimental results demonstrate the improved performance of our method compared with existing methods for multiple-trajectory classification.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A distributed context-free grammars learning algorithm and its application in video classification\",\"authors\":\"Jing Huang, D. Schonfeld\",\"doi\":\"10.1109/VCIP.2012.6410829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel statistical estimation algorithm to stochastic context-sensitive grammars (SCSGs). First, we show that the SCSGs model can be solved by decomposing it into several causal stochastic context-free grammars (SCFGs) models and each of these SCFGs models can be solved simultaneously using a fully synchronous distributed computing framework. An alternate updating scheme based approximate solution to multiple SCFGs is also provided under the assumption of a realistic sequential computing framework. A series of statistical algorithms are expected to learn SCFGs subsequently. The SGSCs can be then used to represent multiple-trajectory. Experimental results demonstrate the improved performance of our method compared with existing methods for multiple-trajectory classification.\",\"PeriodicalId\":103073,\"journal\":{\"name\":\"2012 Visual Communications and Image Processing\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Visual Communications and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2012.6410829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的随机上下文敏感语法(SCSGs)统计估计算法。首先,我们证明了SCSGs模型可以通过将其分解为几个因果随机上下文自由语法(scfg)模型来求解,并且每个scfg模型都可以使用完全同步的分布式计算框架同时求解。在实际序列计算框架的假设下,给出了一种基于多scfg近似解的替代更新方案。随后,期望通过一系列的统计算法来学习scfg。SGSCs可以用来表示多轨迹。实验结果表明,与现有的多弹道分类方法相比,该方法的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A distributed context-free grammars learning algorithm and its application in video classification
In this paper, we propose a novel statistical estimation algorithm to stochastic context-sensitive grammars (SCSGs). First, we show that the SCSGs model can be solved by decomposing it into several causal stochastic context-free grammars (SCFGs) models and each of these SCFGs models can be solved simultaneously using a fully synchronous distributed computing framework. An alternate updating scheme based approximate solution to multiple SCFGs is also provided under the assumption of a realistic sequential computing framework. A series of statistical algorithms are expected to learn SCFGs subsequently. The SGSCs can be then used to represent multiple-trajectory. Experimental results demonstrate the improved performance of our method compared with existing methods for multiple-trajectory classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信