{"title":"分布式无上下文语法学习算法及其在视频分类中的应用","authors":"Jing Huang, D. Schonfeld","doi":"10.1109/VCIP.2012.6410829","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel statistical estimation algorithm to stochastic context-sensitive grammars (SCSGs). First, we show that the SCSGs model can be solved by decomposing it into several causal stochastic context-free grammars (SCFGs) models and each of these SCFGs models can be solved simultaneously using a fully synchronous distributed computing framework. An alternate updating scheme based approximate solution to multiple SCFGs is also provided under the assumption of a realistic sequential computing framework. A series of statistical algorithms are expected to learn SCFGs subsequently. The SGSCs can be then used to represent multiple-trajectory. Experimental results demonstrate the improved performance of our method compared with existing methods for multiple-trajectory classification.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A distributed context-free grammars learning algorithm and its application in video classification\",\"authors\":\"Jing Huang, D. Schonfeld\",\"doi\":\"10.1109/VCIP.2012.6410829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel statistical estimation algorithm to stochastic context-sensitive grammars (SCSGs). First, we show that the SCSGs model can be solved by decomposing it into several causal stochastic context-free grammars (SCFGs) models and each of these SCFGs models can be solved simultaneously using a fully synchronous distributed computing framework. An alternate updating scheme based approximate solution to multiple SCFGs is also provided under the assumption of a realistic sequential computing framework. A series of statistical algorithms are expected to learn SCFGs subsequently. The SGSCs can be then used to represent multiple-trajectory. Experimental results demonstrate the improved performance of our method compared with existing methods for multiple-trajectory classification.\",\"PeriodicalId\":103073,\"journal\":{\"name\":\"2012 Visual Communications and Image Processing\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Visual Communications and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2012.6410829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A distributed context-free grammars learning algorithm and its application in video classification
In this paper, we propose a novel statistical estimation algorithm to stochastic context-sensitive grammars (SCSGs). First, we show that the SCSGs model can be solved by decomposing it into several causal stochastic context-free grammars (SCFGs) models and each of these SCFGs models can be solved simultaneously using a fully synchronous distributed computing framework. An alternate updating scheme based approximate solution to multiple SCFGs is also provided under the assumption of a realistic sequential computing framework. A series of statistical algorithms are expected to learn SCFGs subsequently. The SGSCs can be then used to represent multiple-trajectory. Experimental results demonstrate the improved performance of our method compared with existing methods for multiple-trajectory classification.