在模拟驾驶环境中分析和解释驾驶员头眼行为的计算机视觉系统

S. Metari, F. Prel, T. Moszkowicz, D. Laurendeau, N. Teasdale, S. Beauchemin
{"title":"在模拟驾驶环境中分析和解释驾驶员头眼行为的计算机视觉系统","authors":"S. Metari, F. Prel, T. Moszkowicz, D. Laurendeau, N. Teasdale, S. Beauchemin","doi":"10.1109/CRV.2010.35","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new computer vision framework for the analysis and interpretation of the cephalo-ocular behavior of drivers. We start by detecting the most important facial features, namely the nose tip and the eyes. For that, we introduce a new algorithm for eyes detection and we call upon the cascade of boosted classifiers technique based on Haar-like features for detecting the nose tip. Once those facial features are well identified, we apply the pyramidal Lucas-Kanade method for tracking purposes. Events resulting from those two approaches are combined in order to identify, analyze and interpret the cephalo-ocular behavior of drivers. Experimental results confirm both the robustness and the effectiveness of the proposed framework.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computer Vision System for Analyzing and Interpreting the Cephalo-ocular Behavior of Drivers in a Simulated Driving Context\",\"authors\":\"S. Metari, F. Prel, T. Moszkowicz, D. Laurendeau, N. Teasdale, S. Beauchemin\",\"doi\":\"10.1109/CRV.2010.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new computer vision framework for the analysis and interpretation of the cephalo-ocular behavior of drivers. We start by detecting the most important facial features, namely the nose tip and the eyes. For that, we introduce a new algorithm for eyes detection and we call upon the cascade of boosted classifiers technique based on Haar-like features for detecting the nose tip. Once those facial features are well identified, we apply the pyramidal Lucas-Kanade method for tracking purposes. Events resulting from those two approaches are combined in order to identify, analyze and interpret the cephalo-ocular behavior of drivers. Experimental results confirm both the robustness and the effectiveness of the proposed framework.\",\"PeriodicalId\":358821,\"journal\":{\"name\":\"2010 Canadian Conference on Computer and Robot Vision\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Canadian Conference on Computer and Robot Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2010.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的计算机视觉框架,用于分析和解释驾驶员的头眼行为。我们从检测最重要的面部特征开始,即鼻尖和眼睛。为此,我们引入了一种新的眼睛检测算法,并利用基于Haar-like特征的级联提升分类器技术来检测鼻尖。一旦这些面部特征被很好地识别,我们应用金字塔卢卡斯-卡纳德方法进行跟踪。将这两种方法产生的事件结合起来,以识别、分析和解释驾驶员的头眼行为。实验结果验证了该框架的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computer Vision System for Analyzing and Interpreting the Cephalo-ocular Behavior of Drivers in a Simulated Driving Context
In this paper we introduce a new computer vision framework for the analysis and interpretation of the cephalo-ocular behavior of drivers. We start by detecting the most important facial features, namely the nose tip and the eyes. For that, we introduce a new algorithm for eyes detection and we call upon the cascade of boosted classifiers technique based on Haar-like features for detecting the nose tip. Once those facial features are well identified, we apply the pyramidal Lucas-Kanade method for tracking purposes. Events resulting from those two approaches are combined in order to identify, analyze and interpret the cephalo-ocular behavior of drivers. Experimental results confirm both the robustness and the effectiveness of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信