有理四次平面曲线空间的束理论紧化

Kiryong Chung
{"title":"有理四次平面曲线空间的束理论紧化","authors":"Kiryong Chung","doi":"10.11650/TJM/210103","DOIUrl":null,"url":null,"abstract":"Let $R_4$ be the space of rational plane curves of degree $4$. In this paper, we obtain a sheaf theoretic compactification of $R_4$ via the space of $\\alpha$-semistable pairs on $\\mathbb{P}^2$ and its birational relations through wall-crossings of semistable pairs. We obtain the Poincare polynomial of the compactified space.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sheaf Theoretic Compactifications of the Space of Rational Quartic \\n Plane Curves\",\"authors\":\"Kiryong Chung\",\"doi\":\"10.11650/TJM/210103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R_4$ be the space of rational plane curves of degree $4$. In this paper, we obtain a sheaf theoretic compactification of $R_4$ via the space of $\\\\alpha$-semistable pairs on $\\\\mathbb{P}^2$ and its birational relations through wall-crossings of semistable pairs. We obtain the Poincare polynomial of the compactified space.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/TJM/210103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/TJM/210103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$R_4$为次$4$的有理平面曲线空间。本文在$\mathbb{P}^2$上的$\ α $-半稳定对空间上得到$R_4$的束理论紧化,并通过半稳定对的壁交得到$R_4$的族关系。得到了紧化空间的庞加莱多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sheaf Theoretic Compactifications of the Space of Rational Quartic Plane Curves
Let $R_4$ be the space of rational plane curves of degree $4$. In this paper, we obtain a sheaf theoretic compactification of $R_4$ via the space of $\alpha$-semistable pairs on $\mathbb{P}^2$ and its birational relations through wall-crossings of semistable pairs. We obtain the Poincare polynomial of the compactified space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信