{"title":"有理四次平面曲线空间的束理论紧化","authors":"Kiryong Chung","doi":"10.11650/TJM/210103","DOIUrl":null,"url":null,"abstract":"Let $R_4$ be the space of rational plane curves of degree $4$. In this paper, we obtain a sheaf theoretic compactification of $R_4$ via the space of $\\alpha$-semistable pairs on $\\mathbb{P}^2$ and its birational relations through wall-crossings of semistable pairs. We obtain the Poincare polynomial of the compactified space.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sheaf Theoretic Compactifications of the Space of Rational Quartic \\n Plane Curves\",\"authors\":\"Kiryong Chung\",\"doi\":\"10.11650/TJM/210103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R_4$ be the space of rational plane curves of degree $4$. In this paper, we obtain a sheaf theoretic compactification of $R_4$ via the space of $\\\\alpha$-semistable pairs on $\\\\mathbb{P}^2$ and its birational relations through wall-crossings of semistable pairs. We obtain the Poincare polynomial of the compactified space.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/TJM/210103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/TJM/210103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sheaf Theoretic Compactifications of the Space of Rational Quartic
Plane Curves
Let $R_4$ be the space of rational plane curves of degree $4$. In this paper, we obtain a sheaf theoretic compactification of $R_4$ via the space of $\alpha$-semistable pairs on $\mathbb{P}^2$ and its birational relations through wall-crossings of semistable pairs. We obtain the Poincare polynomial of the compactified space.