可修人机系统的指数稳定性分析

G. Weihua, Peng Peirang
{"title":"可修人机系统的指数稳定性分析","authors":"G. Weihua, Peng Peirang","doi":"10.1109/ICLSIM.2010.5461104","DOIUrl":null,"url":null,"abstract":"The repairable Human & Machine system is studied in the paper. By the method of strong continuous semi-group, the paper analyzes the restriction of essential spectral growth bound of the system operator. The essential spectral radius of the system operator is also discussed before and after perturbation. The results show that the dynamic solution of the system is exponential stability and tends to the steady solution of the system.","PeriodicalId":249102,"journal":{"name":"2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exponential stability analysis of a repairable Human & Machine system\",\"authors\":\"G. Weihua, Peng Peirang\",\"doi\":\"10.1109/ICLSIM.2010.5461104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The repairable Human & Machine system is studied in the paper. By the method of strong continuous semi-group, the paper analyzes the restriction of essential spectral growth bound of the system operator. The essential spectral radius of the system operator is also discussed before and after perturbation. The results show that the dynamic solution of the system is exponential stability and tends to the steady solution of the system.\",\"PeriodicalId\":249102,\"journal\":{\"name\":\"2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICLSIM.2010.5461104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICLSIM.2010.5461104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了可修复的人机系统。利用强连续半群方法,分析了系统算子本质谱增长界的约束条件。讨论了扰动前后系统算子的基本谱半径。结果表明,系统的动态解是指数稳定的,并趋向于系统的稳态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability analysis of a repairable Human & Machine system
The repairable Human & Machine system is studied in the paper. By the method of strong continuous semi-group, the paper analyzes the restriction of essential spectral growth bound of the system operator. The essential spectral radius of the system operator is also discussed before and after perturbation. The results show that the dynamic solution of the system is exponential stability and tends to the steady solution of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信