使用混合线性子空间的人脸检测

Ming-Hsuan Yang, N. Ahuja, D. Kriegman
{"title":"使用混合线性子空间的人脸检测","authors":"Ming-Hsuan Yang, N. Ahuja, D. Kriegman","doi":"10.1109/AFGR.2000.840614","DOIUrl":null,"url":null,"abstract":"We present two methods using mixtures of linear sub-spaces for face detection in gray level images. One method uses a mixture of factor analyzers to concurrently perform clustering and, within each cluster, perform local dimensionality reduction. The parameters of the mixture model are estimated using an EM algorithm. A face is detected if the probability of an input sample is above a predefined threshold. The other mixture of subspaces method uses Kohonen's self-organizing map for clustering and Fisher linear discriminant to find the optimal projection for pattern classification, and a Gaussian distribution to model the class-conditioned density function of the projected samples for each class. The parameters of the class-conditioned density functions are maximum likelihood estimates and the decision rule is also based on maximum likelihood. A wide range of face images including ones in different poses, with different expressions and under different lighting conditions are used as the training set to capture the variations of human faces. Our methods have been tested on three sets of 225 images which contain 871 faces. Experimental results on the first two datasets show that our methods perform as well as the best methods in the literature, yet have fewer false detects.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"Face detection using mixtures of linear subspaces\",\"authors\":\"Ming-Hsuan Yang, N. Ahuja, D. Kriegman\",\"doi\":\"10.1109/AFGR.2000.840614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two methods using mixtures of linear sub-spaces for face detection in gray level images. One method uses a mixture of factor analyzers to concurrently perform clustering and, within each cluster, perform local dimensionality reduction. The parameters of the mixture model are estimated using an EM algorithm. A face is detected if the probability of an input sample is above a predefined threshold. The other mixture of subspaces method uses Kohonen's self-organizing map for clustering and Fisher linear discriminant to find the optimal projection for pattern classification, and a Gaussian distribution to model the class-conditioned density function of the projected samples for each class. The parameters of the class-conditioned density functions are maximum likelihood estimates and the decision rule is also based on maximum likelihood. A wide range of face images including ones in different poses, with different expressions and under different lighting conditions are used as the training set to capture the variations of human faces. Our methods have been tested on three sets of 225 images which contain 871 faces. Experimental results on the first two datasets show that our methods perform as well as the best methods in the literature, yet have fewer false detects.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

摘要

我们提出了两种使用混合线性子空间的方法来检测灰度图像中的人脸。一种方法使用混合因素分析器并发地执行聚类,并在每个聚类中执行局部降维。利用电磁算法对混合模型的参数进行估计。如果输入样本的概率高于预定义的阈值,则检测人脸。另一种混合子空间方法使用Kohonen的自组织映射进行聚类,使用Fisher线性判别法寻找模式分类的最佳投影,并使用高斯分布对每个类别的投影样本的类别条件密度函数进行建模。类条件密度函数的参数是极大似然估计,决策规则也是基于极大似然。利用不同姿势、不同表情、不同光照条件下的大量人脸图像作为训练集,捕捉人脸的变化。我们的方法已经在三组包含871张面孔的225张图片上进行了测试。在前两个数据集上的实验结果表明,我们的方法的性能与文献中最好的方法一样好,但错误检测较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face detection using mixtures of linear subspaces
We present two methods using mixtures of linear sub-spaces for face detection in gray level images. One method uses a mixture of factor analyzers to concurrently perform clustering and, within each cluster, perform local dimensionality reduction. The parameters of the mixture model are estimated using an EM algorithm. A face is detected if the probability of an input sample is above a predefined threshold. The other mixture of subspaces method uses Kohonen's self-organizing map for clustering and Fisher linear discriminant to find the optimal projection for pattern classification, and a Gaussian distribution to model the class-conditioned density function of the projected samples for each class. The parameters of the class-conditioned density functions are maximum likelihood estimates and the decision rule is also based on maximum likelihood. A wide range of face images including ones in different poses, with different expressions and under different lighting conditions are used as the training set to capture the variations of human faces. Our methods have been tested on three sets of 225 images which contain 871 faces. Experimental results on the first two datasets show that our methods perform as well as the best methods in the literature, yet have fewer false detects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信