IGBT模块封装相关退化的物理建模

Yichi Zhang, Yi Zhang, Shuai Zhao, Bo Yao, Huai Wang
{"title":"IGBT模块封装相关退化的物理建模","authors":"Yichi Zhang, Yi Zhang, Shuai Zhao, Bo Yao, Huai Wang","doi":"10.1109/APEC43580.2023.10131229","DOIUrl":null,"url":null,"abstract":"This paper proposes an analytical model to fit degradation data of insulated gate bipolar transistor (IGBT), based on physics understandings. Different from the empirical and data-driven modeling, the revealed failure mechanism, crack propagation and metallization reconstruction leading to the smaller bond contact area and the increased resistivity respectively, have been fully considered. With the help of elaborate geometry equivalence for topside interconnection, an analytical equation is established to quantify the contact resistance, and its variation corresponds to the change of on-state voltage. Consequently, the equation build the bridge between these directly degradation-related indicators (crack, resistivity) and accessible data (on-state voltage, current). Moreover, a concise equation is formulated to analyze the crack propagation while fully considering the existing fracture mechanics theory. And another flexible equation is tailored to quantify the influence of the evolution of metallization reconstruction on resistivity. Finally, power cycling testings are conducted with different test conditions, these data verify the improved performance of the proposed model compared to the existing ones.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-based Modeling of Packaging-related Degradation of IGBT Modules\",\"authors\":\"Yichi Zhang, Yi Zhang, Shuai Zhao, Bo Yao, Huai Wang\",\"doi\":\"10.1109/APEC43580.2023.10131229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an analytical model to fit degradation data of insulated gate bipolar transistor (IGBT), based on physics understandings. Different from the empirical and data-driven modeling, the revealed failure mechanism, crack propagation and metallization reconstruction leading to the smaller bond contact area and the increased resistivity respectively, have been fully considered. With the help of elaborate geometry equivalence for topside interconnection, an analytical equation is established to quantify the contact resistance, and its variation corresponds to the change of on-state voltage. Consequently, the equation build the bridge between these directly degradation-related indicators (crack, resistivity) and accessible data (on-state voltage, current). Moreover, a concise equation is formulated to analyze the crack propagation while fully considering the existing fracture mechanics theory. And another flexible equation is tailored to quantify the influence of the evolution of metallization reconstruction on resistivity. Finally, power cycling testings are conducted with different test conditions, these data verify the improved performance of the proposed model compared to the existing ones.\",\"PeriodicalId\":151216,\"journal\":{\"name\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC43580.2023.10131229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于物理学的理解,提出了一个适合绝缘栅双极晶体管(IGBT)退化数据的解析模型。与经验和数据驱动的模型不同,充分考虑了揭示的破坏机制,裂纹扩展和金属化重建分别导致键接触面积减小和电阻率增加。借助于上层互连的精细几何等价,建立了接触电阻的解析方程,其变化对应于导通电压的变化。因此,该方程在这些与退化直接相关的指标(裂纹、电阻率)和可访问数据(导通状态电压、电流)之间建立了桥梁。在充分考虑现有断裂力学理论的基础上,建立了简洁的裂纹扩展分析方程。本文还设计了另一个柔性方程来量化金属化重构过程的演化对电阻率的影响。最后,在不同的测试条件下进行了功率循环测试,这些数据验证了所提模型与现有模型相比性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-based Modeling of Packaging-related Degradation of IGBT Modules
This paper proposes an analytical model to fit degradation data of insulated gate bipolar transistor (IGBT), based on physics understandings. Different from the empirical and data-driven modeling, the revealed failure mechanism, crack propagation and metallization reconstruction leading to the smaller bond contact area and the increased resistivity respectively, have been fully considered. With the help of elaborate geometry equivalence for topside interconnection, an analytical equation is established to quantify the contact resistance, and its variation corresponds to the change of on-state voltage. Consequently, the equation build the bridge between these directly degradation-related indicators (crack, resistivity) and accessible data (on-state voltage, current). Moreover, a concise equation is formulated to analyze the crack propagation while fully considering the existing fracture mechanics theory. And another flexible equation is tailored to quantify the influence of the evolution of metallization reconstruction on resistivity. Finally, power cycling testings are conducted with different test conditions, these data verify the improved performance of the proposed model compared to the existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信