在detlab中模拟internet拓扑快照

Graciela Perera, Nathan Miller, J. Mela, M. Mcgarry, Jaime C. Acosta
{"title":"在detlab中模拟internet拓扑快照","authors":"Graciela Perera, Nathan Miller, J. Mela, M. Mcgarry, Jaime C. Acosta","doi":"10.1145/2435349.2435371","DOIUrl":null,"url":null,"abstract":"Investigating the Internet's topology is one component towards developing mechanisms that can protect the communication infrastructure underlying our critical systems and applications. We study the feasibility of capturing and fitting Internet's topology snapshots to an emulated environment called Deterlab. Physical limitations on Deterlab include the number of nodes available (i.e., about 400) and the number of interfaces (i.e., 4) to interconnect them. For example, one Internet's topology snapshot at the Autonomous Systems (AS) level has about 100 nodes with 5 nodes requiring more than 4 interfaces. In this paper, we present a short summary of the Internet's topology snapshots collected and propose a solution on how we can represent the snapshots in Deterlab and overcome the limitation of nodes requiring more than four interfaces. Preliminary results show that all paths from snapshots are maintained if a node requiring more than four interfaces had no more than four other nodes requiring four interfaces. Also, we constructed a proof of concept that captures the main idea of using then snapshots in a security experiment in Deterlab. The topology shows a Multiple Origin Autonomous System (MOAS) conflict for 10 nodes. It is scalable to larger topologies in Deterlab because we have automated the topology creation and protocol configuration.","PeriodicalId":118139,"journal":{"name":"Proceedings of the third ACM conference on Data and application security and privacy","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Emulating internet topology snapshots in deterlab\",\"authors\":\"Graciela Perera, Nathan Miller, J. Mela, M. Mcgarry, Jaime C. Acosta\",\"doi\":\"10.1145/2435349.2435371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigating the Internet's topology is one component towards developing mechanisms that can protect the communication infrastructure underlying our critical systems and applications. We study the feasibility of capturing and fitting Internet's topology snapshots to an emulated environment called Deterlab. Physical limitations on Deterlab include the number of nodes available (i.e., about 400) and the number of interfaces (i.e., 4) to interconnect them. For example, one Internet's topology snapshot at the Autonomous Systems (AS) level has about 100 nodes with 5 nodes requiring more than 4 interfaces. In this paper, we present a short summary of the Internet's topology snapshots collected and propose a solution on how we can represent the snapshots in Deterlab and overcome the limitation of nodes requiring more than four interfaces. Preliminary results show that all paths from snapshots are maintained if a node requiring more than four interfaces had no more than four other nodes requiring four interfaces. Also, we constructed a proof of concept that captures the main idea of using then snapshots in a security experiment in Deterlab. The topology shows a Multiple Origin Autonomous System (MOAS) conflict for 10 nodes. It is scalable to larger topologies in Deterlab because we have automated the topology creation and protocol configuration.\",\"PeriodicalId\":118139,\"journal\":{\"name\":\"Proceedings of the third ACM conference on Data and application security and privacy\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the third ACM conference on Data and application security and privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2435349.2435371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the third ACM conference on Data and application security and privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435349.2435371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究Internet的拓扑结构是开发能够保护关键系统和应用程序底层通信基础设施的机制的一个组成部分。我们研究了捕获和拟合互联网拓扑快照到一个称为detlab的仿真环境的可行性。对Deterlab的物理限制包括可用节点的数量(例如,大约400个)和连接它们的接口数量(例如,4个)。例如,自治系统(AS)级别的一个Internet拓扑快照大约有100个节点,其中5个节点需要4个以上的接口。在本文中,我们简要总结了收集到的Internet拓扑快照,并就如何在Deterlab中表示快照和克服节点需要四个以上接口的限制提出了一个解决方案。初步结果表明,如果需要4个以上接口的节点有不超过4个其他需要4个接口的节点,则维护快照中的所有路径。此外,我们还构建了一个概念证明,该概念证明了在detlab的安全实验中使用快照的主要思想。拓扑显示了10个节点的MOAS (Multiple Origin Autonomous System)冲突。在detlab中,它可以扩展到更大的拓扑,因为我们已经自动化了拓扑创建和协议配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emulating internet topology snapshots in deterlab
Investigating the Internet's topology is one component towards developing mechanisms that can protect the communication infrastructure underlying our critical systems and applications. We study the feasibility of capturing and fitting Internet's topology snapshots to an emulated environment called Deterlab. Physical limitations on Deterlab include the number of nodes available (i.e., about 400) and the number of interfaces (i.e., 4) to interconnect them. For example, one Internet's topology snapshot at the Autonomous Systems (AS) level has about 100 nodes with 5 nodes requiring more than 4 interfaces. In this paper, we present a short summary of the Internet's topology snapshots collected and propose a solution on how we can represent the snapshots in Deterlab and overcome the limitation of nodes requiring more than four interfaces. Preliminary results show that all paths from snapshots are maintained if a node requiring more than four interfaces had no more than four other nodes requiring four interfaces. Also, we constructed a proof of concept that captures the main idea of using then snapshots in a security experiment in Deterlab. The topology shows a Multiple Origin Autonomous System (MOAS) conflict for 10 nodes. It is scalable to larger topologies in Deterlab because we have automated the topology creation and protocol configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信