熵力不等式下的最优运输

O. Rioul
{"title":"熵力不等式下的最优运输","authors":"O. Rioul","doi":"10.1109/ITA.2017.8023467","DOIUrl":null,"url":null,"abstract":"We present a simple proof of the entropy-power inequality using an optimal transportation argument which takes the form of a simple change of variables. The same argument yields a reverse inequality involving a conditional differential entropy which has its own interest. It can also be generalized in various ways. The equality case is easily captured by this method and the proof is formally identical in one and several dimensions.","PeriodicalId":305510,"journal":{"name":"2017 Information Theory and Applications Workshop (ITA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimal transportation to the entropy-power inequality\",\"authors\":\"O. Rioul\",\"doi\":\"10.1109/ITA.2017.8023467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple proof of the entropy-power inequality using an optimal transportation argument which takes the form of a simple change of variables. The same argument yields a reverse inequality involving a conditional differential entropy which has its own interest. It can also be generalized in various ways. The equality case is easily captured by this method and the proof is formally identical in one and several dimensions.\",\"PeriodicalId\":305510,\"journal\":{\"name\":\"2017 Information Theory and Applications Workshop (ITA)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2017.8023467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2017.8023467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们用一个简单的变量变换形式的最优输运论证,给出了熵功率不等式的一个简单证明。同样的论点产生了一个涉及条件微分熵的反向不等式,它有自己的兴趣。它也可以以各种方式推广。用这种方法可以很容易地捕捉到等式的情况,并且证明在一维和多维上形式上是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal transportation to the entropy-power inequality
We present a simple proof of the entropy-power inequality using an optimal transportation argument which takes the form of a simple change of variables. The same argument yields a reverse inequality involving a conditional differential entropy which has its own interest. It can also be generalized in various ways. The equality case is easily captured by this method and the proof is formally identical in one and several dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信