求解约束单目标优化问题的改进$\epsilon$约束处理方法LSHADE44

Zhun Fan, Yi Fang, Wenji Li, Yutong Yuan, Zhaojun Wang, Xinchao Bian
{"title":"求解约束单目标优化问题的改进$\\epsilon$约束处理方法LSHADE44","authors":"Zhun Fan, Yi Fang, Wenji Li, Yutong Yuan, Zhaojun Wang, Xinchao Bian","doi":"10.1109/CEC.2018.8477943","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved $\\epsilon$ constrained handling method (IEpsilon) for solving constrained single-objective optimization problems (CSOPs). The IEpsilon method adaptively adjusts the value of $\\epsilon$ according to the proportion of feasible solutions in the current population, which has an ability to balance the search between feasible regions and infeasible regions during the evolutionary process. The proposed constrained handling method is embedded to the differential evolutionary algorithm LSHADE44 to solve CSOPs. Furthermore, a new mutation operator DE/randr1*/1 is proposed in the LSHADE44-IEpsilon. In this paper, twenty-eight CSOPs given by “Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization” are tested by the LSHADE44-IEpsilon and four other differential evolution algorithms CAL-SHADE, LSHADE44+IDE, LSHADE44 and UDE. The experimental results show that the LSHADE44-IEpsilon outperforms these compared algorithms, which indicates that the IEpsilon is an effective constraint-handling method to solve the CEC2017 benchmarks.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"LSHADE44 with an Improved $\\\\epsilon$ Constraint-Handling Method for Solving Constrained Single-Objective Optimization Problems\",\"authors\":\"Zhun Fan, Yi Fang, Wenji Li, Yutong Yuan, Zhaojun Wang, Xinchao Bian\",\"doi\":\"10.1109/CEC.2018.8477943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved $\\\\epsilon$ constrained handling method (IEpsilon) for solving constrained single-objective optimization problems (CSOPs). The IEpsilon method adaptively adjusts the value of $\\\\epsilon$ according to the proportion of feasible solutions in the current population, which has an ability to balance the search between feasible regions and infeasible regions during the evolutionary process. The proposed constrained handling method is embedded to the differential evolutionary algorithm LSHADE44 to solve CSOPs. Furthermore, a new mutation operator DE/randr1*/1 is proposed in the LSHADE44-IEpsilon. In this paper, twenty-eight CSOPs given by “Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization” are tested by the LSHADE44-IEpsilon and four other differential evolution algorithms CAL-SHADE, LSHADE44+IDE, LSHADE44 and UDE. The experimental results show that the LSHADE44-IEpsilon outperforms these compared algorithms, which indicates that the IEpsilon is an effective constraint-handling method to solve the CEC2017 benchmarks.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文提出一种改进的$\epsilon$约束处理方法(IEpsilon),用于求解约束单目标优化问题(csop)。IEpsilon方法根据当前种群中可行解的比例自适应调整$\epsilon$的值,具有在进化过程中平衡可行区域和不可行区域搜索的能力。将该约束处理方法嵌入到差分进化算法LSHADE44中求解csp问题。此外,在LSHADE44-IEpsilon中提出了一个新的变异算子DE/randr1*/1。本文通过LSHADE44- iepsilon和其他四种差分进化算法CAL-SHADE、LSHADE44+IDE、LSHADE44和UDE对“CEC 2017约束实参数优化竞赛问题定义和评价标准”给出的28个csop进行了测试。实验结果表明,LSHADE44-IEpsilon算法优于这些比较算法,这表明IEpsilon算法是解决CEC2017基准测试的有效约束处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSHADE44 with an Improved $\epsilon$ Constraint-Handling Method for Solving Constrained Single-Objective Optimization Problems
This paper proposes an improved $\epsilon$ constrained handling method (IEpsilon) for solving constrained single-objective optimization problems (CSOPs). The IEpsilon method adaptively adjusts the value of $\epsilon$ according to the proportion of feasible solutions in the current population, which has an ability to balance the search between feasible regions and infeasible regions during the evolutionary process. The proposed constrained handling method is embedded to the differential evolutionary algorithm LSHADE44 to solve CSOPs. Furthermore, a new mutation operator DE/randr1*/1 is proposed in the LSHADE44-IEpsilon. In this paper, twenty-eight CSOPs given by “Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization” are tested by the LSHADE44-IEpsilon and four other differential evolution algorithms CAL-SHADE, LSHADE44+IDE, LSHADE44 and UDE. The experimental results show that the LSHADE44-IEpsilon outperforms these compared algorithms, which indicates that the IEpsilon is an effective constraint-handling method to solve the CEC2017 benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信