一些直观模态逻辑的根岑序演算

Log. J. IGPL Pub Date : 2019-07-25 DOI:10.1093/JIGPAL/JZZ020
Zhe Lin, Minghui Ma
{"title":"一些直观模态逻辑的根岑序演算","authors":"Zhe Lin, Minghui Ma","doi":"10.1093/JIGPAL/JZZ020","DOIUrl":null,"url":null,"abstract":"\n Intuitionistic modal logics are extensions of intuitionistic propositional logic with modal axioms. We treat with two modal languages ${\\mathscr{L}}_\\Diamond $ and $\\mathscr{L}_{\\Diamond ,\\Box }$ which extend the intuitionistic propositional language with $\\Diamond $ and $\\Diamond ,\\Box $, respectively. Gentzen sequent calculi are established for several intuitionistic modal logics. In particular, we introduce a Gentzen sequent calculus for the well-known intuitionistic modal logic $\\textsf{MIPC}$. These sequent calculi admit cut elimination and subformula property. They are decidable.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gentzen sequent calculi for some intuitionistic modal logics\",\"authors\":\"Zhe Lin, Minghui Ma\",\"doi\":\"10.1093/JIGPAL/JZZ020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Intuitionistic modal logics are extensions of intuitionistic propositional logic with modal axioms. We treat with two modal languages ${\\\\mathscr{L}}_\\\\Diamond $ and $\\\\mathscr{L}_{\\\\Diamond ,\\\\Box }$ which extend the intuitionistic propositional language with $\\\\Diamond $ and $\\\\Diamond ,\\\\Box $, respectively. Gentzen sequent calculi are established for several intuitionistic modal logics. In particular, we introduce a Gentzen sequent calculus for the well-known intuitionistic modal logic $\\\\textsf{MIPC}$. These sequent calculi admit cut elimination and subformula property. They are decidable.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/JIGPAL/JZZ020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZZ020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

直观模态逻辑是具有模态公理的直觉命题逻辑的扩展。我们使用了两个模态语言${\mathscr{L}}_\Diamond $和$\mathscr{L}_{\Diamond,\Box}$,它们分别用$\Diamond $和$\Diamond,\Box $扩展了直觉命题语言。建立了几种直观模态逻辑的根岑序列演算。特别地,我们为众所周知的直觉模态逻辑$\textsf{MIPC}$引入了Gentzen序列演算。这些序列演算具有切消和子公式性质。它们是可决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gentzen sequent calculi for some intuitionistic modal logics
Intuitionistic modal logics are extensions of intuitionistic propositional logic with modal axioms. We treat with two modal languages ${\mathscr{L}}_\Diamond $ and $\mathscr{L}_{\Diamond ,\Box }$ which extend the intuitionistic propositional language with $\Diamond $ and $\Diamond ,\Box $, respectively. Gentzen sequent calculi are established for several intuitionistic modal logics. In particular, we introduce a Gentzen sequent calculus for the well-known intuitionistic modal logic $\textsf{MIPC}$. These sequent calculi admit cut elimination and subformula property. They are decidable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信