潜在商业网络挖掘:一个概率生成模型

Wenping Zhang, Raymond Y. K. Lau, Yunqing Xia, Chunping Li, Wenjie Li
{"title":"潜在商业网络挖掘:一个概率生成模型","authors":"Wenping Zhang, Raymond Y. K. Lau, Yunqing Xia, Chunping Li, Wenjie Li","doi":"10.1109/WI-IAT.2012.195","DOIUrl":null,"url":null,"abstract":"Though numerous research has been devoted to social network discovery and analysis, relatively little research has been conducted on business network discovery. The main contribution of our research is the development of a novel probabilistic generative model for latent business networks mining. Our experimental results confirm that the proposed method outperforms the well-known vector space based model by 24% in terms of AUC value.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Latent Business Networks Mining: A Probabilistic Generative Model\",\"authors\":\"Wenping Zhang, Raymond Y. K. Lau, Yunqing Xia, Chunping Li, Wenjie Li\",\"doi\":\"10.1109/WI-IAT.2012.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though numerous research has been devoted to social network discovery and analysis, relatively little research has been conducted on business network discovery. The main contribution of our research is the development of a novel probabilistic generative model for latent business networks mining. Our experimental results confirm that the proposed method outperforms the well-known vector space based model by 24% in terms of AUC value.\",\"PeriodicalId\":220218,\"journal\":{\"name\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2012.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

社会网络发现与分析的研究很多,而商业网络发现的研究相对较少。我们研究的主要贡献是开发了一种用于潜在商业网络挖掘的新型概率生成模型。我们的实验结果证实,所提出的方法在AUC值方面优于众所周知的基于向量空间的模型24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Business Networks Mining: A Probabilistic Generative Model
Though numerous research has been devoted to social network discovery and analysis, relatively little research has been conducted on business network discovery. The main contribution of our research is the development of a novel probabilistic generative model for latent business networks mining. Our experimental results confirm that the proposed method outperforms the well-known vector space based model by 24% in terms of AUC value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信