基于层次关注网络的中文短文本多粒度特征融合算法

Zhifeng Lu, Hao-dong Xia, Wenxing Hong
{"title":"基于层次关注网络的中文短文本多粒度特征融合算法","authors":"Zhifeng Lu, Hao-dong Xia, Wenxing Hong","doi":"10.1145/3579654.3579715","DOIUrl":null,"url":null,"abstract":"Chinese short texts comprises a small number of words and many ambiguities, making it challenging to extract semantic information. The mainstream approach of extracting semantic characteristics from Chinese short texts is to combine character and word granularity, although this method suffers from partial loss of semantic features extraction. To address this issue, this study provides a multi-granularity feature fusion technique that combines character, word, pinyin, and radical granularity. Meanwhile, in order to solve the problem of misspelled words in short Chinese texts, we introduce Hierarchical Attention Networks in the model to assign more attention weights to the correct words. The studies show that our model(MGCHA) can successfully improve the performance of semantic matching for short Chinese texts on the LCQMC and BQ datasets.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-granularity Feature Fusion Algorithm for Short Chinese Texts Based on Hierarchical Attention Networks\",\"authors\":\"Zhifeng Lu, Hao-dong Xia, Wenxing Hong\",\"doi\":\"10.1145/3579654.3579715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chinese short texts comprises a small number of words and many ambiguities, making it challenging to extract semantic information. The mainstream approach of extracting semantic characteristics from Chinese short texts is to combine character and word granularity, although this method suffers from partial loss of semantic features extraction. To address this issue, this study provides a multi-granularity feature fusion technique that combines character, word, pinyin, and radical granularity. Meanwhile, in order to solve the problem of misspelled words in short Chinese texts, we introduce Hierarchical Attention Networks in the model to assign more attention weights to the correct words. The studies show that our model(MGCHA) can successfully improve the performance of semantic matching for short Chinese texts on the LCQMC and BQ datasets.\",\"PeriodicalId\":146783,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579654.3579715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中文短文本字数少,歧义多,给语义信息的提取带来挑战。中文短文本语义特征提取的主流方法是字与词粒度相结合,但这种方法存在语义特征提取的部分损失。为了解决这一问题,本研究提出了一种结合字、字、拼音和词根粒度的多粒度特征融合技术。同时,为了解决中文短文本的拼错问题,我们在模型中引入了层次注意网络,为正确的单词分配更多的注意权重。研究表明,我们的模型(MGCHA)可以成功地改善在立法会mc和BQ数据集上的中文短文本语义匹配性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-granularity Feature Fusion Algorithm for Short Chinese Texts Based on Hierarchical Attention Networks
Chinese short texts comprises a small number of words and many ambiguities, making it challenging to extract semantic information. The mainstream approach of extracting semantic characteristics from Chinese short texts is to combine character and word granularity, although this method suffers from partial loss of semantic features extraction. To address this issue, this study provides a multi-granularity feature fusion technique that combines character, word, pinyin, and radical granularity. Meanwhile, in order to solve the problem of misspelled words in short Chinese texts, we introduce Hierarchical Attention Networks in the model to assign more attention weights to the correct words. The studies show that our model(MGCHA) can successfully improve the performance of semantic matching for short Chinese texts on the LCQMC and BQ datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信