用于多脚本文档的盲索引脚本识别器

P. Pati, A. Ramakrishnan
{"title":"用于多脚本文档的盲索引脚本识别器","authors":"P. Pati, A. Ramakrishnan","doi":"10.1109/ICDAR.2007.2","DOIUrl":null,"url":null,"abstract":"We report a hierarchical blind script identifier for 11 different Indian scripts. An initial grouping of the 11 scripts is accomplished at the first level of this hierarchy. At the subsequent level, we recognize the script in each group. The various nodes of this tree use different feature-classifier combinations. A database of 20,000 words of different font styles and sizes is collected and used for each script. Effectiveness of Gabor and Discrete Cosine Transform features has been independently evaluated using nearest neighbor, linear discriminant and support vector machine classifiers. The minimum and maximum accuracies obtained, using this hierarchical mechanism, are 92.2% and 97.6%, respectively.","PeriodicalId":279268,"journal":{"name":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Blind Indic Script Recognizer for Multi-script Documents\",\"authors\":\"P. Pati, A. Ramakrishnan\",\"doi\":\"10.1109/ICDAR.2007.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a hierarchical blind script identifier for 11 different Indian scripts. An initial grouping of the 11 scripts is accomplished at the first level of this hierarchy. At the subsequent level, we recognize the script in each group. The various nodes of this tree use different feature-classifier combinations. A database of 20,000 words of different font styles and sizes is collected and used for each script. Effectiveness of Gabor and Discrete Cosine Transform features has been independently evaluated using nearest neighbor, linear discriminant and support vector machine classifiers. The minimum and maximum accuracies obtained, using this hierarchical mechanism, are 92.2% and 97.6%, respectively.\",\"PeriodicalId\":279268,\"journal\":{\"name\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2007.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2007.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们报告了11种不同印度文字的分级盲文字标识符。11个脚本的初始分组是在这个层次结构的第一级完成的。在接下来的层次上,我们识别每一组中的脚本。该树的各个节点使用不同的特征分类器组合。收集了不同字体样式和大小的2万个单词的数据库,并用于每个脚本。使用最近邻、线性判别和支持向量机分类器对Gabor和离散余弦变换特征的有效性进行了独立评估。使用这种分层机制获得的最小和最大精度分别为92.2%和97.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Blind Indic Script Recognizer for Multi-script Documents
We report a hierarchical blind script identifier for 11 different Indian scripts. An initial grouping of the 11 scripts is accomplished at the first level of this hierarchy. At the subsequent level, we recognize the script in each group. The various nodes of this tree use different feature-classifier combinations. A database of 20,000 words of different font styles and sizes is collected and used for each script. Effectiveness of Gabor and Discrete Cosine Transform features has been independently evaluated using nearest neighbor, linear discriminant and support vector machine classifiers. The minimum and maximum accuracies obtained, using this hierarchical mechanism, are 92.2% and 97.6%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信