高精度应用的灵巧混合机器人

Nolan Jackson, Mitch Crowther, Minchul Shin
{"title":"高精度应用的灵巧混合机器人","authors":"Nolan Jackson, Mitch Crowther, Minchul Shin","doi":"10.1115/IMECE2018-86856","DOIUrl":null,"url":null,"abstract":"Robotic grippers are useful in designing prosthetics and manufacturing. “Robotic hands often fall into two categories: simple and highly specialized grippers often used in manufacturing, and general and highly complicated grippers designed for a variety of tasks.” Ramond et al. [1] Within these two categories there are two main categories of research. These are hard structure and soft structure robotics. Hard structure robotics rely on a mechanical design with a motor or actuator to move a hard-linked part. Soft structure uses a mechanical design, soft material and a pneumatic pump to create the desired movement. The soft material is designed in a way that when it is pumped full of a fluid (i.e. air) it has a specific deformation. Hard robotics have an advantage in their ability to output a large force, but soft robotics have increased degrees of freedom. Dexterity (readiness and grace in physical movement) is another advantage over hard robotics. This project focuses on the process of designing actuators that can feasibly be used for devices falling into either of the two main categories of robotics. Such an actuator could be effectively implemented toward simple applications such as manufacturing-style gripping devices to advanced applications found in modern human prosthetics or areas where high dexterity combined with a delicate touch are required. The simulations show that the designs created work within a pressure range of 0.5 PSI to 1 PSI. This low pressure does not output a lot of force. The high dexterity and small air compressors needed make it a good design for use in areas like manufacturing or medical. If a stronger material was applied to these designs allowing the designs to handle higher pressures these designs could output much higher forces. This increase would make the designs more usable in areas like prosthetics and advanced robotics.","PeriodicalId":119074,"journal":{"name":"Volume 12: Materials: Genetics to Structures","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexterous Hybrid Robotics for High Precision Applications\",\"authors\":\"Nolan Jackson, Mitch Crowther, Minchul Shin\",\"doi\":\"10.1115/IMECE2018-86856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic grippers are useful in designing prosthetics and manufacturing. “Robotic hands often fall into two categories: simple and highly specialized grippers often used in manufacturing, and general and highly complicated grippers designed for a variety of tasks.” Ramond et al. [1] Within these two categories there are two main categories of research. These are hard structure and soft structure robotics. Hard structure robotics rely on a mechanical design with a motor or actuator to move a hard-linked part. Soft structure uses a mechanical design, soft material and a pneumatic pump to create the desired movement. The soft material is designed in a way that when it is pumped full of a fluid (i.e. air) it has a specific deformation. Hard robotics have an advantage in their ability to output a large force, but soft robotics have increased degrees of freedom. Dexterity (readiness and grace in physical movement) is another advantage over hard robotics. This project focuses on the process of designing actuators that can feasibly be used for devices falling into either of the two main categories of robotics. Such an actuator could be effectively implemented toward simple applications such as manufacturing-style gripping devices to advanced applications found in modern human prosthetics or areas where high dexterity combined with a delicate touch are required. The simulations show that the designs created work within a pressure range of 0.5 PSI to 1 PSI. This low pressure does not output a lot of force. The high dexterity and small air compressors needed make it a good design for use in areas like manufacturing or medical. If a stronger material was applied to these designs allowing the designs to handle higher pressures these designs could output much higher forces. This increase would make the designs more usable in areas like prosthetics and advanced robotics.\",\"PeriodicalId\":119074,\"journal\":{\"name\":\"Volume 12: Materials: Genetics to Structures\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 12: Materials: Genetics to Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 12: Materials: Genetics to Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人抓手在假肢设计和制造中很有用。“机器人手通常分为两类:一种是用于制造业的简单和高度专业化的抓手,另一种是为各种任务设计的通用和高度复杂的抓手。”Ramond等[1]在这两个类别中,主要有两类研究。有硬结构机器人和软结构机器人。硬结构机器人依靠带有电机或致动器的机械设计来移动硬连接部件。软结构采用机械设计、软材料和气动泵来产生所需的运动。软材料的设计方式是,当它被泵满流体(即空气)时,它具有特定的变形。硬机器人在输出大力量的能力上有优势,但软机器人增加了自由度。灵巧(身体运动的敏捷和优雅)是硬机器人的另一个优势。这个项目的重点是设计执行器的过程,这些执行器可以用于两种主要机器人类型中的任何一种设备。这样的驱动器可以有效地应用于简单的应用,如制造式夹持装置,到现代人体假肢或需要高灵巧性和细腻触觉的领域的高级应用。仿真结果表明,该设计可在0.5 PSI至1 PSI的压力范围内工作。这种低压不会产生很大的力。高灵活性和所需的小型空气压缩机使其成为制造或医疗等领域使用的良好设计。如果将更强的材料应用于这些设计,使设计能够处理更高的压力,这些设计可以输出更高的力。这种增加将使设计在假肢和先进机器人等领域更有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dexterous Hybrid Robotics for High Precision Applications
Robotic grippers are useful in designing prosthetics and manufacturing. “Robotic hands often fall into two categories: simple and highly specialized grippers often used in manufacturing, and general and highly complicated grippers designed for a variety of tasks.” Ramond et al. [1] Within these two categories there are two main categories of research. These are hard structure and soft structure robotics. Hard structure robotics rely on a mechanical design with a motor or actuator to move a hard-linked part. Soft structure uses a mechanical design, soft material and a pneumatic pump to create the desired movement. The soft material is designed in a way that when it is pumped full of a fluid (i.e. air) it has a specific deformation. Hard robotics have an advantage in their ability to output a large force, but soft robotics have increased degrees of freedom. Dexterity (readiness and grace in physical movement) is another advantage over hard robotics. This project focuses on the process of designing actuators that can feasibly be used for devices falling into either of the two main categories of robotics. Such an actuator could be effectively implemented toward simple applications such as manufacturing-style gripping devices to advanced applications found in modern human prosthetics or areas where high dexterity combined with a delicate touch are required. The simulations show that the designs created work within a pressure range of 0.5 PSI to 1 PSI. This low pressure does not output a lot of force. The high dexterity and small air compressors needed make it a good design for use in areas like manufacturing or medical. If a stronger material was applied to these designs allowing the designs to handle higher pressures these designs could output much higher forces. This increase would make the designs more usable in areas like prosthetics and advanced robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信