持久性图集合上的强拓扑

V. Kiosak, A. Savchenko, M. Zarichnyi
{"title":"持久性图集合上的强拓扑","authors":"V. Kiosak, A. Savchenko, M. Zarichnyi","doi":"10.1063/1.5130798","DOIUrl":null,"url":null,"abstract":"We endow the set of persistence diagrams with the strong topology (the topology of countable direct limit of increasing sequence of bounded subsets considered in the bottleneck distance). The topology of the obtained space is described. \nAlso, we prove that the space of persistence diagrams with the bottleneck metric has infinite asymptotic dimension in the sense of Gromov.","PeriodicalId":179088,"journal":{"name":"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Strong topology on the set of persistence diagrams\",\"authors\":\"V. Kiosak, A. Savchenko, M. Zarichnyi\",\"doi\":\"10.1063/1.5130798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We endow the set of persistence diagrams with the strong topology (the topology of countable direct limit of increasing sequence of bounded subsets considered in the bottleneck distance). The topology of the obtained space is described. \\nAlso, we prove that the space of persistence diagrams with the bottleneck metric has infinite asymptotic dimension in the sense of Gromov.\",\"PeriodicalId\":179088,\"journal\":{\"name\":\"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5130798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5130798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们赋予持久性图集强拓扑(在瓶颈距离上考虑有界子集递增序列的可数直接极限拓扑)。描述得到的空间的拓扑结构。并证明了具有瓶颈度量的持续图空间在Gromov意义下具有无穷渐近维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong topology on the set of persistence diagrams
We endow the set of persistence diagrams with the strong topology (the topology of countable direct limit of increasing sequence of bounded subsets considered in the bottleneck distance). The topology of the obtained space is described. Also, we prove that the space of persistence diagrams with the bottleneck metric has infinite asymptotic dimension in the sense of Gromov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信