随机时滞Cohen-Grossberg神经网络的极限有界性

Qinghua Zhou, Li Wan, Guo Cheng
{"title":"随机时滞Cohen-Grossberg神经网络的极限有界性","authors":"Qinghua Zhou, Li Wan, Guo Cheng","doi":"10.1109/ICSAI.2012.6223628","DOIUrl":null,"url":null,"abstract":"The ultimate boundedness is one of foundational concepts, which plays an important role in investigating the global asymptotic stability, its control and synchronization for dynamical systems. The ultimate boundedness of stochastic Cohen-Grossberg neural networks with time-varying delays is investigated. By employing Lyapunov method and matrix technique, some novel results and criteria on stochastic ultimate boundedness are derived. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultimate boundedness of stochastic Cohen-Grossberg neural networks with delays\",\"authors\":\"Qinghua Zhou, Li Wan, Guo Cheng\",\"doi\":\"10.1109/ICSAI.2012.6223628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultimate boundedness is one of foundational concepts, which plays an important role in investigating the global asymptotic stability, its control and synchronization for dynamical systems. The ultimate boundedness of stochastic Cohen-Grossberg neural networks with time-varying delays is investigated. By employing Lyapunov method and matrix technique, some novel results and criteria on stochastic ultimate boundedness are derived. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极限有界性是研究动力系统全局渐近稳定性及其控制与同步问题的基本概念之一。研究了时变时滞随机Cohen-Grossberg神经网络的最终有界性。利用李雅普诺夫方法和矩阵技术,得到了关于随机极限有界性的一些新的结果和判据。最后通过数值算例说明了理论结果的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultimate boundedness of stochastic Cohen-Grossberg neural networks with delays
The ultimate boundedness is one of foundational concepts, which plays an important role in investigating the global asymptotic stability, its control and synchronization for dynamical systems. The ultimate boundedness of stochastic Cohen-Grossberg neural networks with time-varying delays is investigated. By employing Lyapunov method and matrix technique, some novel results and criteria on stochastic ultimate boundedness are derived. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信