先验子空间估计的Cramer-Rao下界

Remy Boyer, G. Bouleux
{"title":"先验子空间估计的Cramer-Rao下界","authors":"Remy Boyer, G. Bouleux","doi":"10.1109/SAM.2006.1706162","DOIUrl":null,"url":null,"abstract":"In the context of the localization of digital multi-source, we can sometimes assume that we have some a priori knowledge of the location/direction of several sources. In that situation, some works have proposed to tacking into account of this knowledge to improve the localization of the unknown sources. These solutions are based on an orthogonal deflation of the signal subspace. In this paper, we derive the Cramer-Rao lower bound for orthogonally deflated MIMO model and we show that the estimation schemes based on this model can help the estimation of the unknown DOA in some limit situations as for coherent or highly correlated sources but cannot totally cancel the influence of the known directions, in particular for uncorrelated sources with closely-spaced DOA with finite number of sensors","PeriodicalId":272327,"journal":{"name":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cramer-Rao Lower Bound for Prior-Subspace Estimation\",\"authors\":\"Remy Boyer, G. Bouleux\",\"doi\":\"10.1109/SAM.2006.1706162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of the localization of digital multi-source, we can sometimes assume that we have some a priori knowledge of the location/direction of several sources. In that situation, some works have proposed to tacking into account of this knowledge to improve the localization of the unknown sources. These solutions are based on an orthogonal deflation of the signal subspace. In this paper, we derive the Cramer-Rao lower bound for orthogonally deflated MIMO model and we show that the estimation schemes based on this model can help the estimation of the unknown DOA in some limit situations as for coherent or highly correlated sources but cannot totally cancel the influence of the known directions, in particular for uncorrelated sources with closely-spaced DOA with finite number of sensors\",\"PeriodicalId\":272327,\"journal\":{\"name\":\"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2006.1706162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2006.1706162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在数字多源定位的背景下,我们有时可以假设我们对几个源的位置/方向有一些先验知识。在这种情况下,一些工作建议考虑这些知识,以提高未知来源的定位。这些解是基于信号子空间的正交压缩。本文推导了正交压缩MIMO模型的Cramer-Rao下界,并证明了基于该模型的估计方案可以帮助估计在某些极限情况下的未知DOA,如相干或高度相关的源,但不能完全消除已知方向的影响,特别是对于具有有限数量传感器的近间隔DOA的不相关源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cramer-Rao Lower Bound for Prior-Subspace Estimation
In the context of the localization of digital multi-source, we can sometimes assume that we have some a priori knowledge of the location/direction of several sources. In that situation, some works have proposed to tacking into account of this knowledge to improve the localization of the unknown sources. These solutions are based on an orthogonal deflation of the signal subspace. In this paper, we derive the Cramer-Rao lower bound for orthogonally deflated MIMO model and we show that the estimation schemes based on this model can help the estimation of the unknown DOA in some limit situations as for coherent or highly correlated sources but cannot totally cancel the influence of the known directions, in particular for uncorrelated sources with closely-spaced DOA with finite number of sensors
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信