自适应核大小的最大熵准则卡尔曼滤波

S. Fakoorian, Reza Izanloo, Azin Shamshirgaran, D. Simon
{"title":"自适应核大小的最大熵准则卡尔曼滤波","authors":"S. Fakoorian, Reza Izanloo, Azin Shamshirgaran, D. Simon","doi":"10.1109/NAECON46414.2019.9057886","DOIUrl":null,"url":null,"abstract":"Kernel size plays a significant role in the performance of the maximum correntropy Kalman filter (MCC-KF). Kernel size is usually chosen by trail and error. If the kernel size is large, the MCC-KF reduces to the Kalman filter (KF). However, if the kernel size is small, the MCC-KF may diverge, or converge slowly. We propose a novel method for adaptive kernel size selection. We calculate kernel size as a weighted sum of the innovation term and the covariance of the filter-indicated estimation error at each time step. We call this filter the \"MCC with adaptive kernel size filter\" (MCC-AKF). We analytically prove that the true mean square error (TMSE) of the MCC-AKF is less than or equal to that of the MCC-KF under certain conditions. A simulation example is provided to illustrate the analytical results.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Maximum Correntropy Criterion Kalman Filter with Adaptive Kernel Size\",\"authors\":\"S. Fakoorian, Reza Izanloo, Azin Shamshirgaran, D. Simon\",\"doi\":\"10.1109/NAECON46414.2019.9057886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel size plays a significant role in the performance of the maximum correntropy Kalman filter (MCC-KF). Kernel size is usually chosen by trail and error. If the kernel size is large, the MCC-KF reduces to the Kalman filter (KF). However, if the kernel size is small, the MCC-KF may diverge, or converge slowly. We propose a novel method for adaptive kernel size selection. We calculate kernel size as a weighted sum of the innovation term and the covariance of the filter-indicated estimation error at each time step. We call this filter the \\\"MCC with adaptive kernel size filter\\\" (MCC-AKF). We analytically prove that the true mean square error (TMSE) of the MCC-AKF is less than or equal to that of the MCC-KF under certain conditions. A simulation example is provided to illustrate the analytical results.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9057886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

核大小对最大熵卡尔曼滤波器(MCC-KF)的性能有重要影响。内核大小通常通过跟踪和错误来选择。当核尺寸较大时,MCC-KF减小为卡尔曼滤波器(Kalman filter, KF)。但是,如果核尺寸较小,则MCC-KF可能会发散,或者收敛缓慢。提出了一种自适应核大小选择的新方法。我们将核大小计算为每个时间步长的创新项和滤波器指示估计误差的协方差的加权和。我们称这种滤波器为“具有自适应核大小的MCC滤波器”(MCC- akf)。分析证明了在一定条件下MCC-AKF的真均方误差小于等于MCC-KF的真均方误差。最后给出了仿真算例来说明分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Correntropy Criterion Kalman Filter with Adaptive Kernel Size
Kernel size plays a significant role in the performance of the maximum correntropy Kalman filter (MCC-KF). Kernel size is usually chosen by trail and error. If the kernel size is large, the MCC-KF reduces to the Kalman filter (KF). However, if the kernel size is small, the MCC-KF may diverge, or converge slowly. We propose a novel method for adaptive kernel size selection. We calculate kernel size as a weighted sum of the innovation term and the covariance of the filter-indicated estimation error at each time step. We call this filter the "MCC with adaptive kernel size filter" (MCC-AKF). We analytically prove that the true mean square error (TMSE) of the MCC-AKF is less than or equal to that of the MCC-KF under certain conditions. A simulation example is provided to illustrate the analytical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信