S. Fakoorian, Reza Izanloo, Azin Shamshirgaran, D. Simon
{"title":"自适应核大小的最大熵准则卡尔曼滤波","authors":"S. Fakoorian, Reza Izanloo, Azin Shamshirgaran, D. Simon","doi":"10.1109/NAECON46414.2019.9057886","DOIUrl":null,"url":null,"abstract":"Kernel size plays a significant role in the performance of the maximum correntropy Kalman filter (MCC-KF). Kernel size is usually chosen by trail and error. If the kernel size is large, the MCC-KF reduces to the Kalman filter (KF). However, if the kernel size is small, the MCC-KF may diverge, or converge slowly. We propose a novel method for adaptive kernel size selection. We calculate kernel size as a weighted sum of the innovation term and the covariance of the filter-indicated estimation error at each time step. We call this filter the \"MCC with adaptive kernel size filter\" (MCC-AKF). We analytically prove that the true mean square error (TMSE) of the MCC-AKF is less than or equal to that of the MCC-KF under certain conditions. A simulation example is provided to illustrate the analytical results.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Maximum Correntropy Criterion Kalman Filter with Adaptive Kernel Size\",\"authors\":\"S. Fakoorian, Reza Izanloo, Azin Shamshirgaran, D. Simon\",\"doi\":\"10.1109/NAECON46414.2019.9057886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel size plays a significant role in the performance of the maximum correntropy Kalman filter (MCC-KF). Kernel size is usually chosen by trail and error. If the kernel size is large, the MCC-KF reduces to the Kalman filter (KF). However, if the kernel size is small, the MCC-KF may diverge, or converge slowly. We propose a novel method for adaptive kernel size selection. We calculate kernel size as a weighted sum of the innovation term and the covariance of the filter-indicated estimation error at each time step. We call this filter the \\\"MCC with adaptive kernel size filter\\\" (MCC-AKF). We analytically prove that the true mean square error (TMSE) of the MCC-AKF is less than or equal to that of the MCC-KF under certain conditions. A simulation example is provided to illustrate the analytical results.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9057886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximum Correntropy Criterion Kalman Filter with Adaptive Kernel Size
Kernel size plays a significant role in the performance of the maximum correntropy Kalman filter (MCC-KF). Kernel size is usually chosen by trail and error. If the kernel size is large, the MCC-KF reduces to the Kalman filter (KF). However, if the kernel size is small, the MCC-KF may diverge, or converge slowly. We propose a novel method for adaptive kernel size selection. We calculate kernel size as a weighted sum of the innovation term and the covariance of the filter-indicated estimation error at each time step. We call this filter the "MCC with adaptive kernel size filter" (MCC-AKF). We analytically prove that the true mean square error (TMSE) of the MCC-AKF is less than or equal to that of the MCC-KF under certain conditions. A simulation example is provided to illustrate the analytical results.